AIMC Topic: Plant Breeding

Clear Filters Showing 81 to 85 of 85 articles

Multi-modal deep learning improves grain yield prediction in wheat breeding by fusing genomics and phenomics.

Bioinformatics (Oxford, England)
MOTIVATION: Developing new crop varieties with superior performance is highly important to ensure robust and sustainable global food security. The speed of variety development is limited by long field cycles and advanced generation selections in plan...

Multimodal deep learning methods enhance genomic prediction of wheat breeding.

G3 (Bethesda, Md.)
While several statistical machine learning methods have been developed and studied for assessing the genomic prediction (GP) accuracy of unobserved phenotypes in plant breeding research, few methods have linked genomics and phenomics (imaging). Deep ...

Integrating a crop growth model and radiative transfer model to improve estimation of crop traits based on deep learning.

Journal of experimental botany
A major challenge for the estimation of crop traits (biophysical variables) from canopy reflectance is the creation of a high-quality training dataset. To address this problem, this research investigated a conceptual framework by integrating a crop g...

Challenges for FAIR-compliant description and comparison of crop phenotype data with standardized controlled vocabularies.

Database : the journal of biological databases and curation
Crop phenotypic data underpin many pre-breeding efforts to characterize variation within germplasm collections. Although there has been an increase in the global capacity for accumulating and comparing such data, a lack of consistency in the systemat...

Applications of Machine Learning Methods to Genomic Selection in Breeding Wheat for Rust Resistance.

The plant genome
New methods and algorithms are being developed for predicting untested phenotypes in schemes commonly used in genomic selection (GS). The prediction of disease resistance in GS has its own peculiarities: a) there is consensus about the additive natur...