AIMC Topic: Plant Diseases

Clear Filters Showing 21 to 30 of 196 articles

Integrating advanced deep learning techniques for enhanced detection and classification of citrus leaf and fruit diseases.

Scientific reports
In this study, we evaluate the performance of four deep learning models, EfficientNetB0, ResNet50, DenseNet121, and InceptionV3, for the classification of citrus diseases from images. Extensive experiments were conducted on a dataset of 759 images di...

A deep learning-based approach for the detection of cucumber diseases.

PloS one
Cucumbers play a significant role as a greenhouse crop globally. In numerous countries, they are fundamental to dietary practices, contributing significantly to the nutritional patterns of various populations. Due to unfavorable environmental conditi...

A lightweight deep learning model for multi-plant biotic stress classification and detection for sustainable agriculture.

Scientific reports
Plant pathogens and pests hinder general plant health, resulting in poor agricultural yields and production. These threaten global food security and cause environmental and economic shortages. Amidst the available existing heavy deep learning (DL) mo...

Hybrid vision GNNs based early detection and protection against pest diseases in coffee plants.

Scientific reports
Agriculture is an essential foundation that supports numerous economies, and the longevity of the coffee business is of paramount significance. Controlling and safeguarding coffee farms from harmful pests, including the Coffee Berry Borer, Mealybugs,...

Advancing plant leaf disease detection integrating machine learning and deep learning.

Scientific reports
Conventional techniques for identifying plant leaf diseases can be labor-intensive and complicated. This research uses artificial intelligence (AI) to propose an automated solution that improves plant disease detection accuracy to overcome the diffic...

Cucumber green mottle mosaic virus encodes additional small proteins with specific subcellular localizations and virulence function.

Science China. Life sciences
The vast majority of known viruses belong to the positive-sense single-stranded RNA (+ssRNA) class. Tobamoviruses are among the most destructive plant viruses and threaten global food security. It is generally accepted that +ssRNA viruses including t...

Detection of kidney bean leaf spot disease based on a hybrid deep learning model.

Scientific reports
Rapid diagnosis of kidney bean leaf spot disease is crucial for ensuring crop health and increasing yield. However, traditional machine learning methods face limitations in feature extraction, while deep learning approaches, despite their advantages,...

Detection of cotton crops diseases using customized deep learning model.

Scientific reports
The agricultural industry is experiencing revolutionary changes through the latest advances in artificial intelligence and deep learning-based technologies. These powerful tools are being used for a variety of tasks including crop yield estimation, c...

Artificial intelligence for sustainable farming with dual branch convolutional graph attention networks in rice leaf disease detection.

Scientific reports
Rice is susceptible to various diseases, including brown spot, hispa, leaf smut, bacterial leaf blight, and leaf blast, all of which can negatively impact crop yields. Current disease detection methods encounter several challenges, such as reliance o...

Forewarning the seasonal dynamics of corn leafhopper and mollicutes through neural networks.

International journal of biometeorology
The corn leafhopper (CL), Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae), has become the most important corn pest in Brazil and other corn-producing countries. This highly efficient insect vector transmits corn stunting pathogens result...