AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Protein Binding

Showing 151 to 160 of 810 articles

Clear Filters

Prospective de novo drug design with deep interactome learning.

Nature communications
De novo drug design aims to generate molecules from scratch that possess specific chemical and pharmacological properties. We present a computational approach utilizing interactome-based deep learning for ligand- and structure-based generation of dru...

Binding Mechanism of Inhibitors to BRD4 and BRD9 Decoded by Multiple Independent Molecular Dynamics Simulations and Deep Learning.

Molecules (Basel, Switzerland)
Bromodomain 4 and 9 (BRD4 and BRD9) have been regarded as important targets of drug designs in regard to the treatment of multiple diseases. In our current study, molecular dynamics (MD) simulations, deep learning (DL) and binding free energy calcula...

Encoding the space of protein-protein binding interfaces by artificial intelligence.

Computational biology and chemistry
The physical interactions between proteins are largely determined by the structural properties at their binding interfaces. It was found that the binding interfaces in distinctive protein complexes are highly similar. The structural properties underl...

ProtTrans and multi-window scanning convolutional neural networks for the prediction of protein-peptide interaction sites.

Journal of molecular graphics & modelling
This study delves into the prediction of protein-peptide interactions using advanced machine learning techniques, comparing models such as sequence-based, standard CNNs, and traditional classifiers. Leveraging pre-trained language models and multi-vi...

Genome-scale annotation of protein binding sites via language model and geometric deep learning.

eLife
Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accuratel...

PeSTo-Carbs: Geometric Deep Learning for Prediction of Protein-Carbohydrate Binding Interfaces.

Journal of chemical theory and computation
The Protein Structure Transformer (PeSTo), a geometric transformer, has exhibited exceptional performance in predicting protein-protein binding interfaces and distinguishing interfaces with nucleic acids, lipids, small molecules, and ions. In this st...

ESPDHot: An Effective Machine Learning-Based Approach for Predicting Protein-DNA Interaction Hotspots.

Journal of chemical information and modeling
Protein-DNA interactions are pivotal to various cellular processes. Precise identification of the hotspot residues for protein-DNA interactions holds great significance for revealing the intricate mechanisms in protein-DNA recognition and for providi...

Discovery of Covalent Lead Compounds Targeting 3CL Protease with a Lateral Interactions Spiking Neural Network.

Journal of chemical information and modeling
Covalent drugs exhibit advantages in that noncovalent drugs cannot match, and covalent docking is an important method for screening covalent lead compounds. However, it is difficult for covalent docking to screen covalent compounds on a large scale b...

EPDRNA: A Model for Identifying DNA-RNA Binding Sites in Disease-Related Proteins.

The protein journal
Protein-DNA and protein-RNA interactions are involved in many biological processes and regulate many cellular functions. Moreover, they are related to many human diseases. To understand the molecular mechanism of protein-DNA binding and protein-RNA b...

Directional Δ Neural Network (DrΔ-Net): A Modular Neural Network Approach to Binding Free Energy Prediction.

Journal of chemical information and modeling
The protein-ligand binding free energy is a central quantity in structure-based computational drug discovery efforts. Although popular alchemical methods provide sound statistical means of computing the binding free energy of a large breadth of syste...