AIMC Topic: Protein Conformation

Clear Filters Showing 131 to 140 of 558 articles

Adaptive Workflows of Machine Learning Illuminate the Sequential Operation Mechanism of the TAK1's Allosteric Network.

Biochemistry
Allostery is a fundamental mechanism driving biomolecular processes that holds significant therapeutic concern. Our study rigorously investigates how two distinct machine-learning algorithms uniquely classify two already close-to-active DFG-in states...

Predicting Antimicrobial Peptides Using ESMFold-Predicted Structures and ESM-2-Based Amino Acid Features with Graph Deep Learning.

Journal of chemical information and modeling
Currently, antimicrobial resistance constitutes a serious threat to human health. Drugs based on antimicrobial peptides (AMPs) constitute one of the alternatives to address it. Shallow and deep learning (DL)-based models have mainly been built from a...

Accurate structure prediction of biomolecular interactions with AlphaFold 3.

Nature
The introduction of AlphaFold 2 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design. Here we describe our AlphaFold 3 model with a substantially...

Cryo2StructData: A Large Labeled Cryo-EM Density Map Dataset for AI-based Modeling of Protein Structures.

Scientific data
The advent of single-particle cryo-electron microscopy (cryo-EM) has brought forth a new era of structural biology, enabling the routine determination of large biological molecules and their complexes at atomic resolution. The high-resolution structu...

Deciphering the Coevolutionary Dynamics of L2 β-Lactamases via Deep Learning.

Journal of chemical information and modeling
L2 β-lactamases, serine-based class A β-lactamases expressed by , play a pivotal role in antimicrobial resistance (AMR). However, limited studies have been conducted on these important enzymes. To understand the coevolutionary dynamics of L2 β-lactam...

Generative artificial intelligence for de novo protein design.

Current opinion in structural biology
Engineering new molecules with desirable functions and properties has the potential to extend our ability to engineer proteins beyond what nature has so far evolved. Advances in the so-called 'de novo' design problem have recently been brought forwar...

Machine Learning of Three-Dimensional Protein Structures to Predict the Functional Impacts of Genome Variation.

Journal of chemical information and modeling
Research in the human genome sciences generates a substantial amount of genetic data for hundreds of thousands of individuals, which concomitantly increases the number of variants of unknown significance (VUS). Bioinformatic analyses can successfully...

Encoding the space of protein-protein binding interfaces by artificial intelligence.

Computational biology and chemistry
The physical interactions between proteins are largely determined by the structural properties at their binding interfaces. It was found that the binding interfaces in distinctive protein complexes are highly similar. The structural properties underl...

Protein Engineering with Lightweight Graph Denoising Neural Networks.

Journal of chemical information and modeling
Protein engineering faces challenges in finding optimal mutants from a massive pool of candidate mutants. In this study, we introduce a deep-learning-based data-efficient fitness prediction tool to steer protein engineering. Our methodology establish...

Apprehensions and emerging solutions in ML-based protein structure prediction.

Current opinion in structural biology
The three-dimensional structure of proteins determines their function in vital biological processes. Thus, when the structure is known, the molecular mechanism of protein function can be understood in more detail and obtained information utilized in ...