AIMC Topic: Protein Conformation

Clear Filters Showing 161 to 170 of 558 articles

Role of environmental specificity in CASP results.

BMC bioinformatics
BACKGROUND: Recently, significant progress has been made in the field of protein structure prediction by the application of artificial intelligence techniques, as shown by the results of the CASP13 and CASP14 (Critical Assessment of Structure Predict...

Equivariant Flexible Modeling of the Protein-Ligand Binding Pose with Geometric Deep Learning.

Journal of chemical theory and computation
Flexible modeling of the protein-ligand complex structure is a fundamental challenge for in silico drug development. Recent studies have improved commonly used docking tools by incorporating extra-deep learning-based steps. However, such strategies l...

The bad and the good of trends in model building and refinement for sparse-data regions: pernicious forms of overfitting versus good new tools and predictions.

Acta crystallographica. Section D, Structural biology
Model building and refinement, and the validation of their correctness, are very effective and reliable at local resolutions better than about 2.5 Å for both crystallography and cryo-EM. However, at local resolutions worse than 2.5 Å both the procedu...

CSM-Potential2: A comprehensive deep learning platform for the analysis of protein interacting interfaces.

Proteins
Proteins are molecular machinery that participate in virtually all essential biological functions within the cell, which are tightly related to their 3D structure. The importance of understanding protein structure-function relationship is highlighted...

Deep-LASI: deep-learning assisted, single-molecule imaging analysis of multi-color DNA origami structures.

Nature communications
Single-molecule experiments have changed the way we explore the physical world, yet data analysis remains time-consuming and prone to human bias. Here, we introduce Deep-LASI (Deep-Learning Assisted Single-molecule Imaging analysis), a software suite...

CryoREAD: de novo structure modeling for nucleic acids in cryo-EM maps using deep learning.

Nature methods
DNA and RNA play fundamental roles in various cellular processes, where their three-dimensional structures provide information critical to understanding the molecular mechanisms of their functions. Although an increasing number of nucleic acid struct...

Folding and functions of knotted proteins.

Current opinion in structural biology
Topologically knotted proteins have entangled structural elements within their native structures that cannot be disentangled simply by pulling from the N- and C-termini. Systematic surveys have identified different types of knotted protein structures...

Predicting pathogenic protein variants.

Science (New York, N.Y.)
Machine-learning algorithm uses structure prediction to spot disease-causing mutations.

Protein remote homology detection and structural alignment using deep learning.

Nature biotechnology
Exploiting sequence-structure-function relationships in biotechnology requires improved methods for aligning proteins that have low sequence similarity to previously annotated proteins. We develop two deep learning methods to address this gap, TM-Vec...

Integrating deep learning, threading alignments, and a multi-MSA strategy for high-quality protein monomer and complex structure prediction in CASP15.

Proteins
We report the results of the "UM-TBM" and "Zheng" groups in CASP15 for protein monomer and complex structure prediction. These prediction sets were obtained using the D-I-TASSER and DMFold-Multimer algorithms, respectively. For monomer structure pred...