AIMC Topic: Protein Folding

Clear Filters Showing 71 to 80 of 157 articles

ODiNPred: comprehensive prediction of protein order and disorder.

Scientific reports
Structural disorder is widespread in eukaryotic proteins and is vital for their function in diverse biological processes. It is therefore highly desirable to be able to predict the degree of order and disorder from amino acid sequence. It is, however...

A novel fusion based on the evolutionary features for protein fold recognition using support vector machines.

Scientific reports
Protein fold recognition plays a crucial role in discovering three-dimensional structure of proteins and protein functions. Several approaches have been employed for the prediction of protein folds. Some of these approaches are based on extracting fe...

The proteome landscape of the kingdoms of life.

Nature
Proteins carry out the vast majority of functions in all biological domains, but for technological reasons their large-scale investigation has lagged behind the study of genomes. Since the first essentially complete eukaryotic proteome was reported, ...

Exploring Successful Parameter Region for Coarse-Grained Simulation of Biomolecules by Bayesian Optimization and Active Learning.

Biomolecules
Accompanied with an increase of revealed biomolecular structures owing to advancements in structural biology, the molecular dynamics (MD) approach, especially coarse-grained (CG) MD suitable for macromolecules, is becoming increasingly important for ...

Sequence-Based Prediction of Fuzzy Protein Interactions.

Journal of molecular biology
It is becoming increasingly recognised that disordered proteins may be fuzzy, in that they can exhibit a wide variety of binding modes. In addition to the well-known process of folding upon binding (disorder-to-order transition), many examples are em...

Improved protein structure prediction using potentials from deep learning.

Nature
Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence. This problem is of fundamental importance as the structure of a protein largely determines its function; however, protein str...

Machine learning for protein folding and dynamics.

Current opinion in structural biology
Many aspects of the study of protein folding and dynamics have been affected by the recent advances in machine learning. Methods for the prediction of protein structures from their sequences are now heavily based on machine learning tools. The way si...

High-accuracy protein structures by combining machine-learning with physics-based refinement.

Proteins
Protein structure prediction has long been available as an alternative to experimental structure determination, especially via homology modeling based on templates from related sequences. Recently, models based on distance restraints from coevolution...

Analysis of distance-based protein structure prediction by deep learning in CASP13.

Proteins
This paper reports the CASP13 results of distance-based contact prediction, threading, and folding methods implemented in three RaptorX servers, which are built upon the powerful deep convolutional residual neural network (ResNet) method initiated by...

Distance-based protein folding powered by deep learning.

Proceedings of the National Academy of Sciences of the United States of America
Direct coupling analysis (DCA) for protein folding has made very good progress, but it is not effective for proteins that lack many sequence homologs, even coupled with time-consuming conformation sampling with fragments. We show that we can accurate...