AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Speech Intelligibility

Showing 1 to 10 of 39 articles

Clear Filters

Progress made in the efficacy and viability of deep-learning-based noise reduction.

The Journal of the Acoustical Society of America
Recent years have brought considerable advances to our ability to increase intelligibility through deep-learning-based noise reduction, especially for hearing-impaired (HI) listeners. In this study, intelligibility improvements resulting from a curre...

Optical Microphone-Based Speech Reconstruction System With Deep Learning for Individuals With Hearing Loss.

IEEE transactions on bio-medical engineering
OBJECTIVE: Although many speech enhancement (SE) algorithms have been proposed to promote speech perception in hearing-impaired patients, the conventional SE approaches that perform well under quiet and/or stationary noises fail under nonstationary n...

On phase recovery and preserving early reflections for deep-learning speech dereverberation.

The Journal of the Acoustical Society of America
In indoor environments, reverberation often distorts clean speech. Although deep learning-based speech dereverberation approaches have shown much better performance than traditional ones, the inferior speech quality of the dereverberated speech cause...

Deep causal speech enhancement and recognition using efficient long-short term memory Recurrent Neural Network.

PloS one
Long short-term memory (LSTM) has been effectively used to represent sequential data in recent years. However, LSTM still struggles with capturing the long-term temporal dependencies. In this paper, we propose an hourglass-shaped LSTM that is able to...

Recovering speech intelligibility with deep learning and multiple microphones in noisy-reverberant situations for people using cochlear implants.

The Journal of the Acoustical Society of America
For cochlear implant (CI) listeners, holding a conversation in noisy and reverberant environments is often challenging. Deep-learning algorithms can potentially mitigate these difficulties by enhancing speech in everyday listening environments. This ...

Deep learning restores speech intelligibility in multi-talker interference for cochlear implant users.

Scientific reports
Cochlear implants (CIs) do not offer the same level of effectiveness in noisy environments as in quiet settings. Current single-microphone noise reduction algorithms in hearing aids and CIs only remove predictable, stationary noise, and are ineffecti...

Using deep learning to improve the intelligibility of a target speaker in noisy multi-talker environments for people with normal hearing and hearing loss.

The Journal of the Acoustical Society of America
Understanding speech in noisy environments is a challenging task, especially in communication situations with several competing speakers. Despite their ongoing improvement, assistive listening devices and speech processing approaches still do not per...

Speech intelligibility prediction based on a physiological model of the human ear and a hierarchical spiking neural network.

The Journal of the Acoustical Society of America
A speech intelligibility (SI) prediction model is proposed that includes an auditory preprocessing component based on the physiological anatomy and activity of the human ear, a hierarchical spiking neural network, and a decision back-end processing b...

Endpoint-aware audio-visual speech enhancement utilizing dynamic weight modulation based on SNR estimation.

Neural networks : the official journal of the International Neural Network Society
Integrating visual features has been proven effective for deep learning-based speech quality enhancement, particularly in highly noisy environments. However, these models may suffer from redundant information, resulting in performance deterioration w...

Neural-WDRC: A Deep Learning Wide Dynamic Range Compression Method Combined With Controllable Noise Reduction for Hearing Aids.

Trends in hearing
Wide dynamic range compression (WDRC) and noise reduction both play important roles in hearing aids. WDRC provides level-dependent amplification so that the level of sound produced by the hearing aid falls between the hearing threshold and the highes...