Innovative machine learning approach for liver fibrosis and disease severity evaluation in MAFLD patients using MRI fat content analysis.
Journal:
Clinical and experimental medicine
Published Date:
Aug 5, 2025
Abstract
This study employed machine learning models to quantitatively analyze liver fat content from MRI images for the evaluation of liver fibrosis and disease severity in patients with metabolic dysfunction-associated fatty liver disease (MAFLD). A total of 26 confirmed MAFLD cases, along with MRI image sequences obtained from public repositories, were included to perform a comprehensive assessment. Radiomics features-such as contrast, correlation, homogeneity, energy, and entropy-were extracted and used to construct a random forest classification model with optimized hyperparameters. The model achieved outstanding performance, with an accuracy of 96.8%, sensitivity of 95.7%, specificity of 97.8%, and an F1-score of 96.8%, demonstrating its strong capability in accurately evaluating the degree of liver fibrosis and overall disease severity in MAFLD patients. The integration of machine learning with MRI-based analysis offers a promising approach to enhancing clinical decision-making and guiding treatment strategies, underscoring the potential of advanced technologies to improve diagnostic precision and disease management in MAFLD.