AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Non-alcoholic Fatty Liver Disease

Showing 1 to 10 of 112 articles

Clear Filters

Assessing the diagnostic accuracy of ChatGPT-4 in the histopathological evaluation of liver fibrosis in MASH.

Hepatology communications
BACKGROUND: Large language models like ChatGPT have demonstrated potential in medical image interpretation, but their efficacy in liver histopathological analysis remains largely unexplored. This study aims to assess ChatGPT-4-vision's diagnostic acc...

Multiple machine learning algorithms identify 13 types of cell death-critical genes in large and multiple non-alcoholic steatohepatitis cohorts.

Lipids in health and disease
BACKGROUND: Dysregulated programmed cell death pathways mechanistically contribute to hepatic inflammation and fibrogenesis in non-alcoholic steatohepatitis (NASH). Identification of cell death genes may offer insights into diagnostic and therapeutic...

Machine learning for predicting metabolic-associated fatty liver disease including NHHR: a cross-sectional NHANES study.

PloS one
OBJECTIVE: Metabolic - associated fatty liver disease (MAFLD) is a common hepatic disorder with increasing prevalence, and early detection remains inadequately achieved. This study aims to explore the relationship between the non-high-density lipopro...

Identification of CACNB1 protein as an actionable therapeutic target for hepatocellular carcinoma via metabolic dysfunction analysis in liver diseases: An integrated bioinformatics and machine learning approach for precise therapy.

International journal of biological macromolecules
In addition to histological evaluation for nonalcoholic fatty liver disease (NAFLD), a comprehensive analysis of the metabolic landscape is urgently needed to categorize patients into distinct subgroups for precise treatment. In this study, a total o...

Life's Crucial 9 and NAFLD from association to SHAP-interpreted machine learning predictions.

Scientific reports
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. Cardiovascular disease (CVD) and NAFLD share multiple common risk factors. Life's Crucial 9 (LC9), a novel indicator for comprehensive assessment of card...

Mitochondrial mt12361A>G increased risk of metabolic dysfunction-associated steatotic liver disease among non-diabetes.

World journal of gastroenterology
BACKGROUND: Insulin resistance, lipotoxicity, and mitochondrial dysfunction contribute to the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). Mitochondrial dysfunction impairs oxidative phosphorylation and increases ...

Machine learning-based disease risk stratification and prediction of metabolic dysfunction-associated fatty liver disease using vibration-controlled transient elastography: Result from NHANES 2021-2023.

BMC gastroenterology
BACKGROUND: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common chronic liver disease and represents a significant public health issue. Nevertheless, current risk stratification methods remain inadequate. The study aimed to use m...

Machine learning-based integration reveals reliable biomarkers and potential mechanisms of NASH progression to fibrosis.

Scientific reports
Non-alcoholic fatty liver disease (NAFLD) affects about 25% of adults worldwide. Its advanced form, non-alcoholic steatohepatitis (NASH), is a major cause of liver fibrosis, but there are no non-invasive tests for diagnosing or preventing it. In our ...

Identification of potential metabolic biomarkers and immune cell infiltration for metabolic associated steatohepatitis by bioinformatics analysis and machine learning.

Scientific reports
BACKGROUND: Metabolic associated steatohepatitis (MASH) represents a severe subtype of metabolic associated fatty liver disease (MASLD), with an increased risk of progression to cirrhosis and hepatocellular carcinoma. The nomenclature shift from nona...

Machine learning for predicting all-cause mortality of metabolic dysfunction-associated fatty liver disease: a longitudinal study based on NHANES.

BMC gastroenterology
BACKGROUND: The mortality burden of metabolic dysfunction-associated fatty liver disease (MAFLD) is rising, making it crucial to predict mortality and identify the factors influencing it. While advanced machine learning algorithms are gaining recogni...