Single-slice Alzheimer's disease classification and disease regional analysis with Supervised Switching Autoencoders.
Journal:
Computers in biology and medicine
Published Date:
Oct 31, 2019
Abstract
BACKGROUND: Alzheimer's disease (AD) is a difficult to diagnose pathology of the brain that progressively impairs cognitive functions. Computer-assisted diagnosis of AD based on image analysis is an emerging tool to support AD diagnosis. In this article, we explore the application of Supervised Switching Autoencoders (SSAs) to perform AD classification using only one structural Magnetic Resonance Imaging (sMRI) slice. SSAs are revised supervised autoencoder architectures, combining unsupervised representation and supervised classification as one unified model. In this work, we study the capabilities of SSAs to capture complex visual neurodegeneration patterns, and fuse disease semantics simultaneously. We also examine how regions associated to disease state can be discovered by SSAs following a local patch-based approach.