Machine learning for prediction of septic shock at initial triage in emergency department.

Journal: Journal of critical care
Published Date:

Abstract

BACKGROUND: We hypothesized utilizing machine learning (ML) algorithms for screening septic shock in ED would provide better accuracy than qSOFA or MEWS.

Authors

  • Joonghee Kim
    Department of Emergency Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.
  • Hyunglan Chang
    Department of Emergency Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.
  • Doyun Kim
    Department of Emergency Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.
  • Dong-Hyun Jang
    Department of Emergency Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.
  • Inwon Park
    Department of Emergency Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.
  • Kyuseok Kim
    College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea. Electronic address: dreinstein70@gmail.com.