Improved Antibiotic Detection in Raw Milk Using Machine Learning Tools over the Absorption Spectra of a Problem-Specific Nanobiosensor.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

In this article we present the development of a biosensor system that integrates nanotechnology, optomechanics and a spectral detection algorithm for sensitive quantification of antibiotic residues in raw milk of cow. Firstly, nanobiosensors were designed and synthesized by chemically bonding gold nanoparticles (AuNPs) with aptamer bioreceptors highly selective for four widely used antibiotics in the field of veterinary medicine, namely, Kanamycin, Ampicillin, Oxytetracycline and Sulfadimethoxine. When molecules of the antibiotics are present in the milk sample, the interaction with the aptamers induces random AuNP aggregation. This phenomenon modifies the initial absorption spectrum of the milk sample without antibiotics, producing spectral features that indicate both the presence of antibiotics and, to some extent, its concentration. Secondly, we designed and constructed an electro-opto-mechanic device that performs automatic high-resolution spectral data acquisition in a wavelength range of 400 to 800 nm. Thirdly, the acquired spectra were processed by a machine-learning algorithm that is embedded into the acquisition hardware to determine the presence and concentration ranges of the antibiotics. Our approach outperformed state-of-the-art standardized techniques (based on the 520/620 nm ratio) for antibiotic detection, both in speed and in sensitivity.

Authors

  • Pablo Gutiérrez
    Departamento de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile.
  • Sebastián E Godoy
    Departamento de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile.
  • Sergio Torres
    Departamento de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile.
  • Patricio Oyarzún
    Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile.
  • Ignacio Sanhueza
    Departamento de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile.
  • Victor Díaz-García
    Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile.
  • Braulio Contreras-Trigo
    Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile.
  • Pablo Coelho
    Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile.