Evaluation of a deep learning-based computer-aided detection algorithm on chest radiographs: Case-control study.

Journal: Medicine
PMID:

Abstract

Along with recent developments in deep learning techniques, computer-aided diagnosis (CAD) has been growing rapidly in the medical imaging field. In this work, we evaluate the deep learning-based CAD algorithm (DCAD) for detecting and localizing 3 major thoracic abnormalities visible on chest radiographs (CR) and to compare the performance of physicians with and without the assistance of the algorithm. A subset of 244 subjects (60% abnormal CRs) was evaluated. Abnormal findings included mass/nodules (55%), consolidation (21%), and pneumothorax (24%). Observer performance tests were conducted to assess whether the performance of physicians could be enhanced with the algorithm. The area under the receiver operating characteristic (ROC) curve (AUC) and the area under the jackknife alternative free-response ROC (JAFROC) were measured to evaluate the performance of the algorithm and physicians in image classification and lesion detection, respectively. The AUCs for nodule/mass, consolidation, and pneumothorax were 0.9883, 1.000, and 0.9997, respectively. For the image classification, the overall AUC of the pooled physicians was 0.8679 without DCAD and 0.9112 with DCAD. Regarding lesion detection, the pooled observers exhibited a weighted JAFROC figure of merit (FOM) of 0.8426 without DCAD and 0.9112 with DCAD. DCAD for CRs could enhance physicians' performance in the detection of 3 major thoracic abnormalities.

Authors

  • Soo Yun Choi
    College of Medicine, Seoul National University.
  • Sunggyun Park
    From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.).
  • Minchul Kim
    Lunit Incorporated.
  • Jongchan Park
    Lunit Incorporated.
  • Ye Ra Choi
    Department of Radiology, Boramae Medical Center, Seoul, South Korea.
  • Kwang Nam Jin
    Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, South Korea.