Artificial intelligence (AI) models are revolutionising scientific data analysis but are reliant on large training data sets. While artificial training data can be used in the context of NMR processing and data analysis methods, relating NMR paramete...
The fast motions of proteins at the picosecond to nanosecond timescale, known as fast dynamics, are closely related to protein conformational entropy and rearrangement, which in turn affect catalysis, ligand binding and protein allosteric effects. Th...
The nuclear Overhauser effect (NOE) is one of NMR spectroscopy's most important and versatile parameters. NOE is routinely utilized to determine the structures of medium-to-large size biomolecules and characterize protein-protein, protein-RNA, protei...
Macromolecules often exchange between functional states on timescales that can be accessed with NMR spectroscopy and many NMR tools have been developed to characterise the kinetics and thermodynamics of the exchange processes, as well as the structur...
Rapid progress in machine learning offers new opportunities for the automated analysis of multidimensional NMR spectra ranging from protein NMR to metabolomics applications. Most recently, it has been demonstrated how deep neural networks (DNN) desig...
In recent years, the transformative potential of deep neural networks (DNNs) for analysing and interpreting NMR data has clearly been recognised. However, most applications of DNNs in NMR to date either struggle to outperform existing methodologies o...
Non-uniform and sparse sampling of multi-dimensional NMR spectra has over the last decade become an important tool to allow for fast acquisition of multi-dimensional NMR spectra with high resolution. The success of non-uniform sampling NMR hinge on b...
The growth of the biological nuclear magnetic resonance (NMR) field and the development of new experimental technology have mandated the revision and enlargement of the NMR-STAR ontology used to represent experiments, spectral and derived data, and s...
The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the (1)H NMR and (13)C chemical shifts reported for non-exchangeable protons of 187 of these R...