AIMC Topic: Attention

Clear Filters Showing 51 to 60 of 573 articles

Multi-Scale Pyramid Squeeze Attention Similarity Optimization Classification Neural Network for ERP Detection.

Neural networks : the official journal of the International Neural Network Society
Event-related potentials (ERPs) can reveal brain activity elicited by external stimuli. Innovative methods to decode ERPs could enhance the accuracy of brain-computer interface (BCI) technology and promote the understanding of cognitive processes. Th...

A Semantic-Aware Attention and Visual Shielding Network for Cloth-Changing Person Re-Identification.

IEEE transactions on neural networks and learning systems
Cloth-changing person re-identification (ReID) is a newly emerging research topic that aims to retrieve pedestrians whose clothes are changed. Since the human appearance with different clothes exhibits large variations, it is very difficult for exist...

DSTCNet: Deep Spectro-Temporal-Channel Attention Network for Speech Emotion Recognition.

IEEE transactions on neural networks and learning systems
Speech emotion recognition (SER) plays an important role in human-computer interaction, which can provide better interactivity to enhance user experiences. Existing approaches tend to directly apply deep learning networks to distinguish emotions. Amo...

ICH-PRNet: a cross-modal intracerebral haemorrhage prognostic prediction method using joint-attention interaction mechanism.

Neural networks : the official journal of the International Neural Network Society
Accurately predicting intracerebral hemorrhage (ICH) prognosis is a critical and indispensable step in the clinical management of patients post-ICH. Recently, integrating artificial intelligence, particularly deep learning, has significantly enhanced...

User preference interaction fusion and swap attention graph neural network for recommender system.

Neural networks : the official journal of the International Neural Network Society
Recommender systems are widely used in various applications. Knowledge graphs are increasingly used to improve recommendation performance by extracting valuable information from user-item interactions. However, current methods do not effectively use ...

Virtual reality-assisted prediction of adult ADHD based on eye tracking, EEG, actigraphy and behavioral indices: a machine learning analysis of independent training and test samples.

Translational psychiatry
Given the heterogeneous nature of attention-deficit/hyperactivity disorder (ADHD) and the absence of established biomarkers, accurate diagnosis and effective treatment remain a challenge in clinical practice. This study investigates the predictive ut...

Emotion recognition using multi-scale EEG features through graph convolutional attention network.

Neural networks : the official journal of the International Neural Network Society
Emotion recognition via electroencephalogram (EEG) signals holds significant promise across various domains, including the detection of emotions in patients with consciousness disorders, assisting in the diagnosis of depression, and assessing cogniti...

Epileptic seizure detection in EEG signals via an enhanced hybrid CNN with an integrated attention mechanism.

Mathematical biosciences and engineering : MBE
Epileptic seizures, a prevalent neurological condition, necessitate precise and prompt identification for optimal care. Nevertheless, the intricate characteristics of electroencephalography (EEG) signals, noise, and the want for real-time analysis re...

MFC-ACL: Multi-view fusion clustering with attentive contrastive learning.

Neural networks : the official journal of the International Neural Network Society
Multi-view clustering can better handle high-dimensional data by combining information from multiple views, which is important in big data mining. However, the existing models which simply perform feature fusion after feature extraction for individua...

Fusion of brain imaging genetic data for alzheimer's disease diagnosis and causal factors identification using multi-stream attention mechanisms and graph convolutional networks.

Neural networks : the official journal of the International Neural Network Society
Correctly diagnosing Alzheimer's disease (AD) and identifying pathogenic brain regions and genes play a vital role in understanding the AD and developing effective prevention and treatment strategies. Recent works combine imaging and genetic data, an...