AIMC Topic: Binding Sites

Clear Filters Showing 51 to 60 of 499 articles

MERIT: Accurate Prediction of Multi Ligand-binding Residues with Hybrid Deep Transformer Network, Evolutionary Couplings and Transfer Learning.

Journal of molecular biology
Multi-ligand binding residues (MLBRs) are amino acids in protein sequences that interact with multiple different ligands that include proteins, peptides, nucleic acids, and a variety of small molecules. MLBRs are implicated in a number of cellular fu...

Small Molecule Inhibitors of Topoisomerase I Identified by Machine Learning and In Vitro Assays.

International journal of molecular sciences
Tuberculosis (TB) caused by is a leading infectious cause of death globally. The treatment of patients becomes much more difficult for the increasingly common multi-drug resistant TB. Topoisomerase I is essential for the viability of and has been v...

Estimating AChE inhibitors from MCE database by machine learning and atomistic calculations.

Journal of molecular graphics & modelling
Acetylcholinesterase (AChE) is one of the most successful targets for the treatment of Alzheimer's disease (AD). Inhibition of AChE can result in preventing AD. In this context, the machine-learning (ML) model, molecular docking, and molecular dynami...

Improving drug-target interaction prediction through dual-modality fusion with InteractNet.

Journal of bioinformatics and computational biology
In the drug discovery process, accurate prediction of drug-target interactions is crucial to accelerate the development of new drugs. However, existing methods still face many challenges in dealing with complex biomolecular interactions. To this end,...

LGS-PPIS: A Local-Global Structural Information Aggregation Framework for Predicting Protein-Protein Interaction Sites.

Proteins
Exploring protein-protein interaction sites (PPIS) is of significance to elucidating the intrinsic mechanisms of diverse biological processes. On this basis, recent studies have applied deep learning-based technologies to overcome the high cost of we...

An Integrated TCN-CrossMHA Model for Predicting circRNA-RBP Binding Sites.

Interdisciplinary sciences, computational life sciences
Circular RNA (circRNA) has the capacity to bind with RNA binding protein (RBP), thereby exerting a substantial impact on diseases. Predicting binding sites aids in comprehending the interaction mechanism, thereby offering insights for disease treatme...

GeoNet enables the accurate prediction of protein-ligand binding sites through interpretable geometric deep learning.

Structure (London, England : 1993)
The identification of protein binding residues is essential for understanding their functions in vivo. However, it remains a computational challenge to accurately identify binding sites due to the lack of known residue binding patterns. Local residue...

GraphPBSP: Protein binding site prediction based on Graph Attention Network and pre-trained model ProstT5.

International journal of biological macromolecules
Protein-protein/peptide interactions play crucial roles in various biological processes. Exploring their interactions attracts wide attention. However, accurately predicting their binding sites remains a challenging task. Here, we develop an effectiv...

Deep learning for discriminating non-trivial conformational changes in molecular dynamics simulations of SARS-CoV-2 spike-ACE2.

Scientific reports
Molecular dynamics (MD) simulations produce a substantial volume of high-dimensional data, and traditional methods for analyzing these data pose significant computational demands. Advances in MD simulation analysis combined with deep learning-based a...