AIMC Topic: Binding Sites

Clear Filters Showing 51 to 60 of 485 articles

Deep learning for discriminating non-trivial conformational changes in molecular dynamics simulations of SARS-CoV-2 spike-ACE2.

Scientific reports
Molecular dynamics (MD) simulations produce a substantial volume of high-dimensional data, and traditional methods for analyzing these data pose significant computational demands. Advances in MD simulation analysis combined with deep learning-based a...

Capture of RNA-binding proteins across mouse tissues using HARD-AP.

Nature communications
RNA-binding proteins (RBPs) modulate all aspects of RNA metabolism, but a comprehensive picture of RBP expression across tissues is lacking. Here, we describe our development of the method we call HARD-AP that robustly retrieves RBPs and tightly asso...

Development of a machine learning-based target-specific scoring function for structure-based binding affinity prediction for human dihydroorotate dehydrogenase inhibitors.

Journal of computational chemistry
Human dihydroorotate dehydrogenase (hDHODH) is a flavin mononucleotide-dependent enzyme that can limit de novo pyrimidine synthesis, making it a therapeutic target for diseases such as autoimmune disorders and cancer. In this study, using the docking...

Combined Physics- and Machine-Learning-Based Method to Identify Druggable Binding Sites Using SILCS-Hotspots.

Journal of chemical information and modeling
Identifying druggable binding sites on proteins is an important and challenging problem, particularly for cryptic, allosteric binding sites that may not be obvious from X-ray, cryo-EM, or predicted structures. The Site-Identification by Ligand Compet...

DeepDBS: Identification of DNA-binding sites in protein sequences by using deep representations and random forest.

Methods (San Diego, Calif.)
Interactions of biological molecules in organisms are considered to be primary factors for the lifecycle of that organism. Various important biological functions are dependent on such interactions and among different kinds of interactions, the protei...

Predicting splicing patterns from the transcription factor binding sites in the promoter with deep learning.

BMC genomics
BACKGROUND: Alternative splicing is a pivotal mechanism of post-transcriptional modification that contributes to the transcriptome plasticity and proteome diversity in metazoan cells. Although many splicing regulations around the exon/intron regions ...

Deciphering the Language of Protein-DNA Interactions: A Deep Learning Approach Combining Contextual Embeddings and Multi-Scale Sequence Modeling.

Journal of molecular biology
Deciphering the mechanisms governing protein-DNA interactions is crucial for understanding key cellular processes and disease pathways. In this work, we present a powerful deep learning approach that significantly advances the computational predictio...

Predicting the Binding of Small Molecules to Proteins through Invariant Representation of the Molecular Structure.

Journal of chemical information and modeling
We present a computational scheme for predicting the ligands that bind to a pocket of a known structure. It is based on the generation of a general abstract representation of the molecules, which is invariant to rotations, translations, and permutati...

A Point Cloud Graph Neural Network for Protein-Ligand Binding Site Prediction.

International journal of molecular sciences
Predicting protein-ligand binding sites is an integral part of structural biology and drug design. A comprehensive understanding of these binding sites is essential for advancing drug innovation, elucidating mechanisms of biological function, and exp...

iCRBP-LKHA: Large convolutional kernel and hybrid channel-spatial attention for identifying circRNA-RBP interaction sites.

PLoS computational biology
Circular RNAs (circRNAs) play vital roles in transcription and translation. Identification of circRNA-RBP (RNA-binding protein) interaction sites has become a fundamental step in molecular and cell biology. Deep learning (DL)-based methods have been ...