This dataset is from an EEG brain-computer interface (BCI) study investigating the use of deep learning (DL) for online continuous pursuit (CP) BCI. In this task, subjects use Motor Imagery (MI) to control a cursor to follow a randomly moving target,...
Stroke, an abrupt cerebrovascular ailment resulting in brain tissue damage, has prompted the adoption of motor imagery (MI)-based brain-computer interface (BCI) systems in stroke rehabilitation. However, analyzing electroencephalogram (EEG) signals f...
Neural networks : the official journal of the International Neural Network Society
39549492
Deep learning solutions have rapidly emerged for EEG decoding, achieving state-of-the-art performance on a variety of decoding tasks. Despite their high performance, existing solutions do not fully address the challenge posed by the introduction of m...
The utilization of motor imagery-based brain-computer interfaces (MI-BCI) has been shown to assist stroke patients activate motor regions in the brain. In particular, the brain regions activated by unilateral upper limb multi-task are more extensive,...
. Accurate classification of electroencephalogram (EEG) signals is crucial for advancing brain-computer interface (BCI) technology. However, current methods face significant challenges in classifying hand movement EEG signals, including effective spa...
EEG-based brain-computer interfaces (BCIs) have the potential to decode visual information. Recently, artificial neural networks (ANNs) have been used to classify EEG signals evoked by visual stimuli. However, methods using ANNs to extract features f...
Brain-machine interfaces (BMIs) aim to restore sensorimotor function to individuals suffering from neural injury and disease. A critical step in implementing a BMI is to decode movement intention from recorded neural activity patterns in sensorimotor...
Biological communication system for neurological disorder patients is similar to the Brain Computer Interface in a way that it facilitates the connection to the outside world in real time. The interdisciplinary field of Electroencephalogram based mes...
IEEE journal of biomedical and health informatics
39527418
In motor imagery (MI) tasks for brain computer interfaces (BCIs), the spatial covariance matrix (SCM) of electroencephalogram (EEG) signals plays a critical role in accurate classification. Given that SCMs are symmetric positive definite (SPD), Riema...
IEEE journal of biomedical and health informatics
39509308
In brain-computer interface (BCI) systems, symmetric positive definite (SPD) manifold within Riemannian space has been frequently utilized to extract spatial features from electroencephalogram (EEG) signals. However, the intrinsic high dimensionality...