Journal of the American Heart Association
Feb 19, 2019
Background An angiography-based supervised machine learning ( ML ) algorithm was developed to classify lesions as having fractional flow reserve ≤0.80 versus >0.80. Methods and Results With a 4:1 ratio, 1501 patients with 1501 intermediate lesions we...
AIMS: To study the diagnostic performance of the ratio of Duke jeopardy score (DJS) to the minimal lumen diameter (MLD) at coronary computed tomographic angiography (CCTA) and machine learning based CT-FFR for differentiating functionally significant...
BACKGROUND: Coronary computed tomographic angiography (CTA) is a reliable modality to detect coronary artery disease. However, CTA generally overestimates stenosis severity compared with invasive angiography, and angiographic stenosis does not necess...
PURPOSE: The goal of this study was to assess the potential added benefit of accounting for partial volume effects (PVE) in an automatic coronary lumen segmentation algorithm that is used to determine the hemodynamic significance of a coronary artery...