AIMC Topic: Crops, Agricultural

Clear Filters Showing 11 to 20 of 188 articles

A dual-branch model combining convolution and vision transformer for crop disease classification.

PloS one
Computer vision holds tremendous potential in crop disease classification, but the complex texture and shape characteristics of crop diseases make disease classification challenging. To address these issues, this paper proposes a dual-branch model fo...

Fine extraction of multi-crop planting area based on deep learning with Sentinel- 2 time-series data.

Environmental science and pollution research international
Accurate and timely access to the spatial distribution of crops is crucial for sustainable agricultural development and food security. However, extracting multi-crop areas based on high-resolution time-series data and deep learning still faces challe...

Deep learning based abiotic crop stress assessment for precision agriculture: A comprehensive review.

Journal of environmental management
Abiotic stresses are a leading cause of crop loss and a severe peril to global food security. Precise and prompt identification of abiotic stresses in crops is crucial for effective mitigation strategies. In recent years, Deep learning (DL) technique...

Novel hybrid transfer neural network for wheat crop growth stages recognition using field images.

Scientific reports
Wheat is one of the world's most widely cultivated cereal crops and is a primary food source for a significant portion of the population. Wheat goes through several distinct developmental phases, and accurately identifying these stages is essential f...

Hybrid vision GNNs based early detection and protection against pest diseases in coffee plants.

Scientific reports
Agriculture is an essential foundation that supports numerous economies, and the longevity of the coffee business is of paramount significance. Controlling and safeguarding coffee farms from harmful pests, including the Coffee Berry Borer, Mealybugs,...

Hybrid deep learning model for density and growth rate estimation on weed image dataset.

Scientific reports
Agriculture research is particularly essential since crop production is a challenge for farmers in India and around the world. 37% of the crop is impacted by invasive plants (weeds). Those unwelcome plants that interbreed with cultivated crops and de...

Detection of cotton crops diseases using customized deep learning model.

Scientific reports
The agricultural industry is experiencing revolutionary changes through the latest advances in artificial intelligence and deep learning-based technologies. These powerful tools are being used for a variety of tasks including crop yield estimation, c...

Soil and crop interaction analysis for yield prediction with satellite imagery and deep learning techniques for the coastal regions.

Journal of environmental management
Crop yield is a significant factor in world income and poverty alleviation as well as food production through agriculture. Conventional crop yield forecasting approaches that employ subjective estimates including farmers' perceptions are imprecise an...

Evaluating the performance of random forest, support vector machine, gradient tree boost, and CART for improved crop-type monitoring using greenest pixel composite in Google Earth Engine.

Environmental monitoring and assessment
The development of machine learning algorithms, along with high-resolution satellite datasets, aids in improved agriculture monitoring and mapping. Nevertheless, the use of high-resolution optical satellite datasets is usually constrained by clouds a...

How monitoring crops and drought, combined with climate projections, enhances food security: Insights from the Northwestern regions of Bangladesh.

Environmental monitoring and assessment
Crop and drought monitoring are vital for sustainable agriculture, as they ensure optimal crop growth, identify stress factors, and enhance productivity, all of which contribute to food security. However, climate projections are equally important as ...