AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Drug-Related Side Effects and Adverse Reactions

Showing 61 to 70 of 305 articles

Clear Filters

Computational and artificial intelligence-based approaches for drug metabolism and transport prediction.

Trends in pharmacological sciences
Drug metabolism and transport, orchestrated by drug-metabolizing enzymes (DMEs) and drug transporters (DTs), are implicated in drug-drug interactions (DDIs) and adverse drug reactions (ADRs). Reliable and precise predictions of DDIs and ADRs are crit...

Control list of high-priority chemicals based on 5-HT-RI functionality and the human health interference effects selective CNN-GRU deep learning model.

The Science of the total environment
The antidepressant drug known as 5-HT reuptake inhibitor (5-HT-RI) was commonly detected in biological tissues and result in significant adverse health effects. Homology modeling was used to characterize the functionalities (efficacy and resistance),...

An artificial intelligence algorithm for co-clustering to help in pharmacovigilance before and during the COVID-19 pandemic.

British journal of clinical pharmacology
AIMS: Monitoring drug safety in real-world settings is the primary aim of pharmacovigilance. Frequent adverse drug reactions (ADRs) are usually identified during drug development. Rare ones are mostly characterized through post-marketing scrutiny, in...

Extracting adverse drug events from clinical Notes: A systematic review of approaches used.

Journal of biomedical informatics
BACKGROUND: An adverse drug event (ADE) is any unfavorable effect that occurs due to the use of a drug. Extracting ADEs from unstructured clinical notes is essential to biomedical text extraction research because it helps with pharmacovigilance and p...

Model tuning or prompt Tuning? a study of large language models for clinical concept and relation extraction.

Journal of biomedical informatics
OBJECTIVE: To develop soft prompt-based learning architecture for large language models (LLMs), examine prompt-tuning using frozen/unfrozen LLMs, and assess their abilities in transfer learning and few-shot learning.

Improving the performance of machine learning penicillin adverse drug reaction classification with synthetic data and transfer learning.

Internal medicine journal
BACKGROUND: Machine learning may assist with the identification of potentially inappropriate penicillin allergy labels. Strategies to improve the performance of existing models for this task include the use of additional training data, synthetic data...

Algorithmic Identification of Treatment-Emergent Adverse Events From Clinical Notes Using Large Language Models: A Pilot Study in Inflammatory Bowel Disease.

Clinical pharmacology and therapeutics
Outpatient clinical notes are a rich source of information regarding drug safety. However, data in these notes are currently underutilized for pharmacovigilance due to methodological limitations in text mining. Large language models (LLMs) like Bidir...

Artificial intelligence-powered pharmacovigilance: A review of machine and deep learning in clinical text-based adverse drug event detection for benchmark datasets.

Journal of biomedical informatics
OBJECTIVE: The primary objective of this review is to investigate the effectiveness of machine learning and deep learning methodologies in the context of extracting adverse drug events (ADEs) from clinical benchmark datasets. We conduct an in-depth a...

Dual Representation Learning for Predicting Drug-Side Effect Frequency Using Protein Target Information.

IEEE journal of biomedical and health informatics
Knowledge of unintended effects of drugs is critical in assessing the risk of treatment and in drug repurposing. Although numerous existing studies predict drug-side effect presence, only four of them predict the frequency of the side effects. Unfort...