AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Fetal Heart

Showing 11 to 20 of 34 articles

Clear Filters

Application of Artificial Intelligence in Anatomical Structure Recognition of Standard Section of Fetal Heart.

Computational and mathematical methods in medicine
Congenital heart defect (CHD) refers to the overall structural abnormality of the heart or large blood vessels in the chest cavity. It is the most common type of fetal congenital defects. Prenatal diagnosis of congenital heart disease can improve the...

Classification of normal and abnormal fetal heart ultrasound images and identification of ventricular septal defects based on deep learning.

Journal of perinatal medicine
OBJECTIVES: Congenital heart defects (CHDs) are the most common birth defects. Recently, artificial intelligence (AI) was used to assist in CHD diagnosis. No comparison has been made among the various types of algorithms that can assist in the prenat...

Fetal electrocardiography and artificial intelligence for prenatal detection of congenital heart disease.

Acta obstetricia et gynecologica Scandinavica
INTRODUCTION: This study aims to investigate non-invasive electrocardiography as a method for the detection of congenital heart disease (CHD) with the help of artificial intelligence.

Advances in the Application of Artificial Intelligence in Fetal Echocardiography.

Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography
Congenital heart disease is a severe health risk for newborns. Early detection of abnormalities in fetal cardiac structure and function during pregnancy can help patients seek timely diagnostic and therapeutic advice, and early intervention planning ...

A deep learning framework for identifying and segmenting three vessels in fetal heart ultrasound images.

Biomedical engineering online
BACKGROUND: Congenital heart disease (CHD) is one of the most common birth defects in the world. It is the leading cause of infant mortality, necessitating an early diagnosis for timely intervention. Prenatal screening using ultrasound is the primary...

HFSCCD: A Hybrid Neural Network for Fetal Standard Cardiac Cycle Detection in Ultrasound Videos.

IEEE journal of biomedical and health informatics
In the fetal cardiac ultrasound examination, standard cardiac cycle (SCC) recognition is the essential foundation for diagnosing congenital heart disease. Previous studies have mostly focused on the detection of adult CCs, which may not be applicable...

Role of artificial-intelligence-assisted automated cardiac biometrics in prenatal screening for coarctation of aorta.

Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology
OBJECTIVE: Although remarkable strides have been made in fetal medicine and the prenatal diagnosis of congenital heart disease, around 60% of newborns with isolated coarctation of the aorta (CoA) are not identified prior to birth. The prenatal detect...

Interaction between clinicians and artificial intelligence to detect fetal atrioventricular septal defects on ultrasound: how can we optimize collaborative performance?

Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology
OBJECTIVES: Artificial intelligence (AI) has shown promise in improving the performance of fetal ultrasound screening in detecting congenital heart disease (CHD). The effect of giving AI advice to human operators has not been studied in this context....

A Coarse-Fine Collaborative Learning Model for Three Vessel Segmentation in Fetal Cardiac Ultrasound Images.

IEEE journal of biomedical and health informatics
Congenital heart disease (CHD) is the most frequent birth defect and a leading cause of infant mortality, emphasizing the crucial need for its early diagnosis. Ultrasound is the primary imaging modality for prenatal CHD screening. As a complement to ...

A YOLOX-Based Deep Instance Segmentation Neural Network for Cardiac Anatomical Structures in Fetal Ultrasound Images.

IEEE/ACM transactions on computational biology and bioinformatics
Echocardiography is an essential procedure for the prenatal examination of the fetus for congenital heart disease (CHD). Accurate segmentation of key anatomical structures in a four-chamber view is an essential step in measuring fetal growth paramete...