AIMC Topic: Gestational Age

Clear Filters Showing 1 to 10 of 136 articles

Listening deeper: neural networks unravel acoustic features in preterm infant crying.

Scientific reports
Early infant crying provides critical insights into neurodevelopment, with atypical acoustic features linked to conditions such as preterm birth. However, previous studies have focused on limited and specific acoustic features, hindering a more compr...

Preterm birth trends and risk factors in a multi-ethnic Asian population: A retrospective study from 2017 to 2023, can we screen and predict this?

Annals of the Academy of Medicine, Singapore
INTRODUCTION: Preterm birth (PTB) remains a leading cause of perinatal morbidity and mortality worldwide. Understanding Singapore's PTB trends and associated risk factors can inform effective strategies for screening and intervention. This study anal...

Investigation of serum neuroserpin levels in pregnant women diagnosed with pre-eclampsia: a prospective case-control study.

BMC pregnancy and childbirth
OBJECTIVE: Neuroserpin, a serine protease inhibitor, is recognized for its anti-inflammatory and neuroprotective properties. Given the central role of inflammation and neurological involvement in the pathophysiology of preeclampsia, this study aimed ...

Development and external validation of a machine learning model to predict bronchopulmonary dysplasia using dynamic factors.

Scientific reports
We hypothesized that incorporating postnatal dynamic factors would enhance the prediction accuracy of bronchopulmonary dysplasia in preterm infants. This retrospective cohort study included neonates born before 32 weeks of gestation at Seoul National...

Artificial intelligence based automatic classification, annotation, and measurement of the fetal heart using HeartAssist.

Scientific reports
This study evaluated the feasibility of HeartAssist, a novel automated tool designed for classification of fetal cardiac views, annotation of cardiac structures, and measurement of cardiac parameters. Unlike previous AI tools that primarily focused o...

Prediction of retinopathy of prematurity development and treatment need with machine learning models.

BMC ophthalmology
BACKGROUND: To evaluate the effectiveness of machine learning (ML) models in predicting the occurrence of retinopathy of prematurity (ROP) and treatment need.

Predicting Risk for Patent Ductus Arteriosus in the Neonate: A Machine Learning Analysis.

Medicina (Kaunas, Lithuania)
: Patent ductus arteriosus (PDA) is common in newborns, being associated with high morbidity and mortality. While maternal and neonatal conditions are known contributors, few studies use advanced machine learning (ML) as predictive factors. This stud...

Early prediction of intraventricular hemorrhage in very low birth weight infants using deep neural networks with attention in low-resource settings.

Scientific reports
Early prediction of intraventricular hemorrhage (IVH) in very low-birthweight infants (VLBWIs) remains challenging because of multifactorial risk factors. IVH often occurs within a few hours after birth, yet its onset cannot be reliably predicted usi...

Predicting low birth weight risks in pregnant women in Brazil using machine learning algorithms: data from the Araraquara cohort study.

BMC pregnancy and childbirth
BACKGROUND: Low birth weight (LBW) is a critical factor linked to neonatal morbidity and mortality. Early prediction is essential for timely interventions. This study aimed to develop and evaluate predictive models for LBW using machine learning algo...