AIMC Topic: Groundwater

Clear Filters Showing 11 to 20 of 108 articles

Assessment of groundwater chemistry to predict arsenic contamination from a canal commanded area: applications of different machine learning models.

Environmental geochemistry and health
Groundwater arsenic (As), contamination is a significant issue worldwide including China and Pakistan, particularly in canal command areas. In this study, 131 groundwater samples were collected, and three machine learning models [Random Forest (RF), ...

Improving groundwater quality predictions in semi-arid regions using ensemble learning models.

Environmental science and pollution research international
Groundwater resources constitute one of the primary sources of freshwater in semi-arid and arid climates. Monitoring the groundwater quality is an essential component of environmental management. In this study, a comprehensive comparison was conducte...

AQuA-P: A machine learning-based tool for water quality assessment.

Journal of contaminant hydrology
This study addresses the critical challenge of assessing the quality of groundwater and surface water, which are essential resources for various societal needs. The main contribution of this study is the application of machine learning models for eva...

Geochemical evolution, geostatistical mapping and machine learning predictive modeling of groundwater fluoride: a case study of western Balochistan, Quetta.

Environmental geochemistry and health
Around 2.6 billion people are at risk of tooth carries and fluorosis worldwide. Quetta is the worst affected district in Balochistan plateau. Endemic abnormal groundwater fluoride ( ) lacks spatiotemporal studies. This research integrates geospatial...

Recent advances in groundwater pollution research using machine learning from 2000 to 2023: A bibliometric analysis.

Environmental research
Groundwater pollution has become a global challenge, posing significant threats to human health and ecological environments. Machine learning, with its superior ability to capture non-linear relationships in data, has shown significant potential in a...

Enhancing groundwater quality prediction through ensemble machine learning techniques.

Environmental monitoring and assessment
Groundwater quality is assessed by conducting water sampling and laboratory analysis. Field-based measurements are costly and time-consuming. This study introduces a machine learning (ML)-based framework and innovative application of stacking ensembl...

Simulation and prediction of sulfamethazine migration, transformation and risk diffusion during cross-media infiltration from surface water to groundwater driven by dynamic water level: Machine learning coupled HYDRUS-GMS model.

Journal of environmental management
Seasonal water level fluctuations in rivers significantly influenced the cross-media migration, transformation, and risk diffusion of antibiotics from the vadose zone into groundwater. This study developed a coupled model integrating machine learning...

Prioritization of monitoring compounds from SNTS identified organic micropollutants in contaminated groundwater using a machine learning optimized ToxPi model.

Water research
Advanced suspect and non-target screening (SNTS) approach can identify a large number of potential hazardous micropollutants in groundwater, underscoring the need for pinpointing priority pollutants among detected chemicals. This present study theref...

Fuzzy multi-objective optimization for sustainable agricultural water management of irrigation networks.

Journal of environmental management
Sustainable water resource management in arid and water deficit regions requires optimal use of water resources due to competition among different water sectors. The purpose of this study is to model uncertainties in economic and hydro-climatic varia...

Unravelling integrated groundwater management in pollution-prone agricultural cities: A synergistic approach combining probabilistic risk, source apportionment and artificial intelligence.

Journal of hazardous materials
Groundwater is vital for agricultural cities, but intensive farming and fertilizer use have increased contamination risks, particularly for non-carcinogenic health hazards. This study reveals the sources of contaminants in groundwater, their health i...