AIMC Topic: Ligands

Clear Filters Showing 381 to 390 of 660 articles

Emulating Docking Results Using a Deep Neural Network: A New Perspective for Virtual Screening.

Journal of chemical information and modeling
Docking is one of the most important steps in virtual screening pipelines, and it is an established method for examining potential interactions between ligands and receptors. However, this method is computationally expensive, and it is often among th...

Three-Dimensional Convolutional Neural Networks and a Cross-Docked Data Set for Structure-Based Drug Design.

Journal of chemical information and modeling
One of the main challenges in drug discovery is predicting protein-ligand binding affinity. Recently, machine learning approaches have made substantial progress on this task. However, current methods of model evaluation are overly optimistic in measu...

Prediction of Specific TCR-Peptide Binding From Large Dictionaries of TCR-Peptide Pairs.

Frontiers in immunology
Current sequencing methods allow for detailed samples of T cell receptors (TCR) repertoires. To determine from a repertoire whether its host had been exposed to a target, computational tools that predict TCR-epitope binding are required. Currents too...

A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes.

Nature communications
Chemoproteomics is a key technology to characterize the mode of action of drugs, as it directly identifies the protein targets of bioactive compounds and aids in the development of optimized small-molecule compounds. Current approaches cannot identif...

Improved Scaffold Hopping in Ligand-Based Virtual Screening Using Neural Representation Learning.

Journal of chemical information and modeling
Deep learning has demonstrated significant potential in advancing state of the art in many problem domains, especially those benefiting from automated feature extraction. Yet, the methodology has seen limited adoption in the field of ligand-based vir...

Comprehensive Prediction of Molecular Recognition in a Combinatorial Chemical Space Using Machine Learning.

ACS combinatorial science
In combinatorial chemical approaches, optimizing the composition and arrangement of building blocks toward a particular function has been done using a number of methods, including high throughput molecular screening, molecular evolution, and computat...

Data Set Augmentation Allows Deep Learning-Based Virtual Screening to Better Generalize to Unseen Target Classes and Highlight Important Binding Interactions.

Journal of chemical information and modeling
Current deep learning methods for structure-based virtual screening take the structures of both the protein and the ligand as input but make little or no use of the protein structure when predicting ligand binding. Here, we show how a relatively simp...

Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition.

Methods (San Diego, Calif.)
In the last decade, machine learning and artificial intelligence applications have received a significant boost in performance and attention in both academic research and industry. The success behind most of the recent state-of-the-art methods can be...

Identification of ligand-binding residues using protein sequence profile alignment and query-specific support vector machine model.

Analytical biochemistry
Information embedded in ligand-binding residues (LBRs) of proteins is important for understanding protein functions. How to accurately identify the potential ligand-binding residues is still a challenging problem, especially only protein sequence is ...