AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Antigen Presentation

Showing 1 to 10 of 11 articles

Clear Filters

Quantitative Prediction of the Landscape of T Cell Epitope Immunogenicity in Sequence Space.

Frontiers in immunology
Immunodominant T cell epitopes preferentially targeted in multiple individuals are the critical element of successful vaccines and targeted immunotherapies. However, the underlying principles of this "convergence" of adaptive immunity among different...

T Cell Epitope Prediction and Its Application to Immunotherapy.

Frontiers in immunology
T cells play a crucial role in controlling and driving the immune response with their ability to discriminate peptides derived from healthy as well as pathogenic proteins. In this review, we focus on the currently available computational tools for ep...

Improvement of Neoantigen Identification Through Convolution Neural Network.

Frontiers in immunology
Accurate prediction of neoantigens and the subsequent elicited protective anti-tumor response are particularly important for the development of cancer vaccine and adoptive T-cell therapy. However, current algorithms for predicting neoantigens are lim...

A simple pan-specific RNN model for predicting HLA-II binding peptides.

Molecular immunology
The prediction of human leukocyte antigen (HLA) class II binding peptides plays important roles in understanding the mechanism of immune recognition and developing effective epitope-based vaccines. In this work, gated recurrent unit (GRU)-based recur...

T cell immune responses deciphered.

Science (New York, N.Y.)
A machine-learning approach reveals antigen encoding that predicts T cell responses.

Identification of antigen-presentation related B cells as a key player in Crohn's disease using single-cell dissecting, hdWGCNA, and deep learning.

Clinical and experimental medicine
Crohn's disease (CD) arises from intricate intercellular interactions within the intestinal lamina propria. Our objective was to use single-cell RNA sequencing to investigate CD pathogenesis and explore its clinical significance. We identified a dist...

LRMAHpan: a novel tool for multi-allelic HLA presentation prediction using Resnet-based and LSTM-based neural networks.

Frontiers in immunology
INTRODUCTION: The identification of peptides eluted from HLA complexes by mass spectrometry (MS) can provide critical data for deep learning models of antigen presentation prediction and promote neoantigen vaccine design. A major challenge remains in...

OnmiMHC: a machine learning solution for UCEC tumor vaccine development through enhanced peptide-MHC binding prediction.

Frontiers in immunology
The key roles of Major Histocompatibility Complex (MHC) Class I and II molecules in the immune system are well established. This study aims to develop a novel machine learning framework for predicting antigen peptide presentation by MHC Class I and I...