AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Models, Molecular

Showing 151 to 160 of 628 articles

Clear Filters

De novo design of high-affinity binders of bioactive helical peptides.

Nature
Many peptide hormones form an α-helix on binding their receptors, and sensitive methods for their detection could contribute to better clinical management of disease. De novo protein design can now generate binders with high affinity and specificity ...

Bonds and bytes: The odyssey of structural biology.

Current opinion in structural biology
Characterizing structural and dynamic properties of proteins and large macromolecular assemblies is crucial to understand the molecular mechanisms underlying biological functions. In the field of structural biology, no single method comprehensively r...

Structure, dynamics, and stability of the smallest and most complex 7 protein knot.

The Journal of biological chemistry
Proteins can spontaneously tie a variety of intricate topological knots through twisting and threading of the polypeptide chains. Recently developed artificial intelligence algorithms have predicted several new classes of topological knotted proteins...

DeepMainmast: integrated protocol of protein structure modeling for cryo-EM with deep learning and structure prediction.

Nature methods
Three-dimensional structure modeling from maps is an indispensable step for studying proteins and their complexes with cryogenic electron microscopy. Although the resolution of determined cryogenic electron microscopy maps has generally improved, the...

Role of environmental specificity in CASP results.

BMC bioinformatics
BACKGROUND: Recently, significant progress has been made in the field of protein structure prediction by the application of artificial intelligence techniques, as shown by the results of the CASP13 and CASP14 (Critical Assessment of Structure Predict...

The bad and the good of trends in model building and refinement for sparse-data regions: pernicious forms of overfitting versus good new tools and predictions.

Acta crystallographica. Section D, Structural biology
Model building and refinement, and the validation of their correctness, are very effective and reliable at local resolutions better than about 2.5 Å for both crystallography and cryo-EM. However, at local resolutions worse than 2.5 Å both the procedu...

Small-Molecule Conformer Generators: Evaluation of Traditional Methods and AI Models on High-Quality Data Sets.

Journal of chemical information and modeling
Small-molecule conformer generation (SMCG) is an extremely important task in both ligand- and structure-based computer-aided drug design, especially during the hit discovery phase. Recently, a multitude of artificial intelligence (AI) models tailored...

CSM-Potential2: A comprehensive deep learning platform for the analysis of protein interacting interfaces.

Proteins
Proteins are molecular machinery that participate in virtually all essential biological functions within the cell, which are tightly related to their 3D structure. The importance of understanding protein structure-function relationship is highlighted...

Molecular geometric deep learning.

Cell reports methods
Molecular representation learning plays an important role in molecular property prediction. Existing molecular property prediction models rely on the de facto standard of covalent-bond-based molecular graphs for representing molecular topology at the...

CryoREAD: de novo structure modeling for nucleic acids in cryo-EM maps using deep learning.

Nature methods
DNA and RNA play fundamental roles in various cellular processes, where their three-dimensional structures provide information critical to understanding the molecular mechanisms of their functions. Although an increasing number of nucleic acid struct...