AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Molecular Structure

Showing 101 to 110 of 313 articles

Clear Filters

Combining machine learning and quantum mechanics yields more chemically aware molecular descriptors for medicinal chemistry applications.

Journal of computational chemistry
Molecular interaction fields (MIFs), describing molecules in terms of their ability to interact with any chemical entity, are one of the most established and versatile concepts in drug discovery. Improvement of this molecular description is highly de...

Optimization of diosgenin extraction from Dioscorea deltoidea tubers using response surface methodology and artificial neural network modelling.

PloS one
INTRODUCTION: Dioscorea deltoidea var. deltoidea (Dioscoreaceae) is a valuable endangered plant of great medicinal and economic importance due to the presence of the bioactive compound diosgenin. In the present study, response surface methodology (RS...

AI in drug development: a multidisciplinary perspective.

Molecular diversity
The introduction of a new drug to the commercial market follows a complex and long process that typically spans over several years and entails large monetary costs due to a high attrition rate. Because of this, there is an urgent need to improve this...

Molecular insights on ABL kinase activation using tree-based machine learning models and molecular docking.

Molecular diversity
Abelson kinase (c-Abl) is a non-receptor tyrosine kinase involved in several biological processes essential for cell differentiation, migration, proliferation, and survival. This enzyme's activation might be an alternative strategy for treating disea...

A multi-conformational virtual screening approach based on machine learning targeting PI3Kγ.

Molecular diversity
Nowadays, more and more attention has been attracted to develop selective PI3Kγ inhibitors, but the unique structural features of PI3Kγ protein make it a very big challenge. In the present study, a virtual screening strategy based on machine learning...

Discovery of novel DGAT1 inhibitors by combination of machine learning methods, pharmacophore model and 3D-QSAR model.

Molecular diversity
DGAT1 plays a crucial controlling role in triglyceride biosynthetic pathways, which makes it an attractive therapeutic target for obesity. Thus, development of DGAT1 inhibitors with novel chemical scaffolds is desired and important in the drug discov...

QSAR modeling without descriptors using graph convolutional neural networks: the case of mutagenicity prediction.

Molecular diversity
Deep neural networks are effective in learning directly from low-level encoded data without the need of feature extraction. This paper shows how QSAR models can be constructed from 2D molecular graphs without computing chemical descriptors. Two graph...

MLatom 2: An Integrative Platform for Atomistic Machine Learning.

Topics in current chemistry (Cham)
Atomistic machine learning (AML) simulations are used in chemistry at an ever-increasing pace. A large number of AML models has been developed, but their implementations are scattered among different packages, each with its own conventions for input ...

Feature importance of machine learning prediction models shows structurally active part and important physicochemical features in drug design.

Drug metabolism and pharmacokinetics
The objective of this study was to obtain the indicators of physicochemical parameters and structurally active sites to design new chemical entities with desirable pharmacokinetic profiles by investigating the process by which machine learning predic...