IEEE transactions on neural networks and learning systems
Jan 14, 2015
This paper investigates the problem of global exponential lag synchronization of a class of switched neural networks with time-varying delays via neural activation function and applications in image encryption. The controller is dependent on the outp...
IEEE transactions on neural networks and learning systems
Jan 6, 2015
It has been shown that brain-like self-repair can arise from the interactions between neurons and astrocytes where endocannabinoids are synthesized and released from active neurons. This retrograde messenger feeds back to local synapses directly and ...
IEEE transactions on neural networks and learning systems
Jan 6, 2015
In this paper, the problem of energy-to-peak state estimation for a class of discrete-time Markov jump recurrent neural networks (RNNs) with randomly occurring nonlinearities (RONs) and time-varying delays is investigated. A practical phenomenon of n...
IEEE transactions on neural networks and learning systems
Dec 25, 2014
In this paper, the stability problem is studied for a class of stochastic neural networks (NNs) with local impulsive effects. The impulsive effects considered can be not only nonidentical in different dimensions of the system state but also various a...
IEEE transactions on neural networks and learning systems
Dec 24, 2014
Kohonen's self-organizing map (SOM) is used to map high-dimensional data into a low-dimensional representation (typically a 2-D or 3-D space) while preserving their topological characteristics. A major reason for its application is to be able to visu...
Journal of computational neuroscience
Nov 18, 2014
In a broad class of models, direction selectivity in primary visual cortical neurons arises from the linear summation of spatially offset and temporally lagged inputs combined with a spike threshold. Here, we characterize the robustness of this class...
IEEE transactions on neural networks and learning systems
Nov 13, 2014
This paper presents a new design scheme for the passivity and passification of a class of memristor-based recurrent neural networks (MRNNs) with additive time-varying delays. The predictable assumptions on the boundedness and Lipschitz continuity of ...
This paper is concerned with the problem of improved delay-dependent robust stability criteria for neutral-type recurrent neural networks (NRNNs) with time-varying delays. Combining the Lyapunov-Krasovskii functional with linear matrix inequality (LM...
IEEE transactions on neural networks and learning systems
Nov 7, 2014
In this paper, adaptive synchronization of memristor-based neural networks (MNNs) with time-varying delays is investigated. The dynamical analysis here employs results from the theory of differential equations with discontinuous right-hand sides as i...
Spiking neural P systems (SN P systems, for short) are a class of parallel and distributed computation models inspired from the way the neurons process and communicate information by means of spikes. In this paper, we consider a new variant of SN P s...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.