AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Pharmacokinetics

Showing 21 to 30 of 61 articles

Clear Filters

Application of machine learning techniques in population pharmacokinetics/pharmacodynamics modeling.

Drug metabolism and pharmacokinetics
Population pharmacokinetics/pharmacodynamics (pop-PK/PD) consolidates pharmacokinetic and pharmacodynamic data from many subjects to understand inter- and intra-individual variability due to patient backgrounds, including disease state and genetics. ...

Predictive Modelling in pharmacokinetics: from in-silico simulations to personalized medicine.

Expert opinion on drug metabolism & toxicology
INTRODUCTION: Pharmacokinetic parameters assessment is a critical aspect of drug discovery and development, yet challenges persist due to limited training data. Despite advancements in machine learning and in-silico predictions, scarcity of data hamp...

Deep-NCA: A deep learning methodology for performing noncompartmental analysis of pharmacokinetic data.

CPT: pharmacometrics & systems pharmacology
Noncompartmental analysis (NCA) is a model-independent approach for assessing pharmacokinetics (PKs). Although the existing NCA algorithms are very well-established and widely utilized, they suffer from low accuracies in the setting of sparse PK samp...

Transfer learning empowers accurate pharmacokinetics prediction of small samples.

Drug discovery today
Accurate assessment of pharmacokinetic (PK) properties is crucial for selecting optimal candidates and avoiding downstream failures. Transfer learning is an innovative machine learning approach enabling high-throughput prediction with limited data. R...

Predicting Pharmacokinetics of Drugs Using Artificial Intelligence Tools: A Systematic Review.

European journal of drug metabolism and pharmacokinetics
BACKGROUND AND OBJECTIVE: Pharmacokinetic studies encompass the examination of the absorption, distribution, metabolism, and excretion of bioactive compounds. The pharmacokinetics of drugs exert a substantial influence on their efficacy and safety. C...

Predicting Elimination of Small-Molecule Drug Half-Life in Pharmacokinetics Using Ensemble and Consensus Machine Learning Methods.

Journal of chemical information and modeling
Half-life is a significant pharmacokinetic parameter included in the excretion phase of absorption, distribution, metabolism, and excretion. It is one of the key factors for the successful marketing of drug candidates. Therefore, predicting half-life...

Mechanism-based organization of neural networks to emulate systems biology and pharmacology models.

Scientific reports
Deep learning neural networks are often described as black boxes, as it is difficult to trace model outputs back to model inputs due to a lack of clarity over the internal mechanisms. This is even true for those neural networks designed to emulate me...

Machine learning framework to predict pharmacokinetic profile of small molecule drugs based on chemical structure.

Clinical and translational science
Accurate prediction of a new compound's pharmacokinetic (PK) profile is pivotal for the success of drug discovery programs. An initial assessment of PK in preclinical species and humans is typically performed through allometric scaling and mathematic...

Another string to your bow: machine learning prediction of the pharmacokinetic properties of small molecules.

Expert opinion on drug discovery
INTRODUCTION: Prediction of pharmacokinetic (PK) properties is crucial for drug discovery and development. Machine-learning (ML) models, which use statistical pattern recognition to learn correlations between input features (such as chemical structur...

Deep-PK: deep learning for small molecule pharmacokinetic and toxicity prediction.

Nucleic acids research
Evaluating pharmacokinetic properties of small molecules is considered a key feature in most drug development and high-throughput screening processes. Generally, pharmacokinetics, which represent the fate of drugs in the human body, are described fro...