AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Plant Breeding

Showing 11 to 20 of 67 articles

Clear Filters

PlantMine: A Machine-Learning Framework to Detect Core SNPs in Rice Genomics.

Genes
As a fundamental global staple crop, rice plays a pivotal role in human nutrition and agricultural production systems. However, its complex genetic architecture and extensive trait variability pose challenges for breeders and researchers in optimizin...

Machine learning methods in near infrared spectroscopy for predicting sensory traits in sweetpotatoes.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
It has been established that near infrared (NIR) spectroscopy has the potential of estimating sensory traits given the direct spectral responses that these properties have in the NIR region. In sweetpotato, sensory and texture traits are key for impr...

Machine learning for genomic and pedigree prediction in sugarcane.

The plant genome
Sugarcane (Saccharum spp.) plays a crucial role in global sugar production; however, the efficiency of breeding programs has been hindered by its heterozygous polyploid genomes. Considering non-additive genetic effects is essential in genome predicti...

Integrating genomics, phenomics, and deep learning improves the predictive ability for Fusarium head blight-related traits in winter wheat.

The plant genome
Fusarium head blight (FHB) remains one of the most destructive diseases of wheat (Triticum aestivum L.), causing considerable losses in yield and end-use quality. Phenotyping of FHB resistance traits, Fusarium-damaged kernels (FDK), and deoxynivaleno...

Using machine learning to combine genetic and environmental data for maize grain yield predictions across multi-environment trials.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Incorporating feature-engineered environmental data into machine learning-based genomic prediction models is an efficient approach to indirectly model genotype-by-environment interactions. Complementing phenotypic traits and molecular markers with hi...

Artificial intelligence in plant breeding.

Trends in genetics : TIG
Harnessing cutting-edge technologies to enhance crop productivity is a pivotal goal in modern plant breeding. Artificial intelligence (AI) is renowned for its prowess in big data analysis and pattern recognition, and is revolutionizing numerous scien...

Machine learning-enhanced multi-trait genomic prediction for optimizing cannabinoid profiles in cannabis.

The Plant journal : for cell and molecular biology
Cannabis sativa L., known for its medicinal and psychoactive properties, has recently experienced rapid market expansion but remains understudied in terms of its fundamental biology due to historical prohibitions. This pioneering study implements GS ...

Machine learning algorithms translate big data into predictive breeding accuracy.

Trends in plant science
Statistical machine learning (ML) extracts patterns from extensive genomic, phenotypic, and environmental data. ML algorithms automatically identify relevant features and use cross-validation to ensure robust models and improve prediction reliability...

Big data and artificial intelligence-aided crop breeding: Progress and prospects.

Journal of integrative plant biology
The past decade has witnessed rapid developments in gene discovery, biological big data (BBD), artificial intelligence (AI)-aided technologies, and molecular breeding. These advancements are expected to accelerate crop breeding under the pressure of ...