AIMC Topic: Pregnancy Rate

Clear Filters Showing 11 to 20 of 59 articles

Enhancing predictive models for egg donation: time to blastocyst hatching and machine learning insights.

Reproductive biology and endocrinology : RB&E
BACKGROUND: Data sciences and artificial intelligence are becoming encouraging tools in assisted reproduction, favored by time-lapse technology incubators. Our objective is to analyze, compare and identify the most predictive machine learning algorit...

Can time-lapse culture combined with artificial intelligence improve ongoing pregnancy rates in fresh transfer cycles of single cleavage stage embryos?

Frontiers in endocrinology
PURPOSE: With the rapid advancement of time-lapse culture and artificial intelligence (AI) technologies for embryo screening, pregnancy rates in assisted reproductive technology (ART) have significantly improved. However, clinical pregnancy rates in ...

Deep learning versus manual morphology-based embryo selection in IVF: a randomized, double-blind noninferiority trial.

Nature medicine
To assess the value of deep learning in selecting the optimal embryo for in vitro fertilization, a multicenter, randomized, double-blind, noninferiority parallel-group trial was conducted across 14 in vitro fertilization clinics in Australia and Euro...

Interpretable machine learning models for predicting clinical pregnancies associated with surgical sperm retrieval from testes of different etiologies: a retrospective study.

BMC urology
BACKGROUND: The relationship between surgical sperm retrieval of different etiologies and clinical pregnancy is unclear. We aimed to develop a robust and interpretable machine learning (ML) model for predicting clinical pregnancy using the SHapley Ad...

The construction of machine learning-based predictive models for high-quality embryo formation in poor ovarian response patients with progestin-primed ovarian stimulation.

Reproductive biology and endocrinology : RB&E
OBJECTIVE: To explore the optimal models for predicting the formation of high-quality embryos in Poor Ovarian Response (POR) Patients with Progestin-Primed Ovarian Stimulation (PPOS) using machine learning algorithms.

Clinical data-based modeling of IVF live birth outcome and its application.

Reproductive biology and endocrinology : RB&E
BACKGROUND: The low live birth rate and difficult decision-making of the in vitro fertilization (IVF) treatment regimen bring great trouble to patients and clinicians. Based on the retrospective clinical data of patients undergoing the IVF cycle, thi...

Derivation and validation of the first web-based nomogram to predict the spontaneous pregnancy after reproductive surgery using machine learning models.

Frontiers in endocrinology
OBJECTIVE: Infertility remains a significant global burden over the years. Reproductive surgery is an effective strategy for infertile women. Early prediction of spontaneous pregnancy after reproductive surgery is of high interest for the patients se...

Development of a machine learning-based prediction model for clinical pregnancy of intrauterine insemination in a large Chinese population.

Journal of assisted reproduction and genetics
PURPOSE: This study aimed to evaluate the effectiveness of a random forest (RF) model in predicting clinical pregnancy outcomes from intrauterine insemination (IUI) and identifying significant factors affecting IUI pregnancy in a large Chinese popula...

Clinical outcomes of single blastocyst transfer with machine learning guided noninvasive chromosome screening grading system in infertile patients.

Reproductive biology and endocrinology : RB&E
BACKGROUND: Prospective observational studies have demonstrated that the machine learning (ML) -guided noninvasive chromosome screening (NICS) grading system, which we called the noninvasive chromosome screening-artificial intelligence (NICS-AI) grad...

Artificial intelligence-powered assisted ranking of sibling embryos to increase first cycle pregnancy rate.

Reproductive biomedicine online
RESEARCH QUESTION: Could EMBRYOLY, an artificial intelligence embryo evaluation tool, assist embryologists to increase first cycle pregnancy rate and reduce cycles to pregnancy for patients?