AIMC Topic: Protein Conformation

Clear Filters Showing 21 to 30 of 524 articles

Artificial Intelligence: A New Tool for Structure-Based G Protein-Coupled Receptor Drug Discovery.

Biomolecules
Understanding protein structures can facilitate the development of therapeutic drugs. Traditionally, protein structures have been determined through experimental approaches such as X-ray crystallography, NMR spectroscopy, and cryo-electron microscopy...

Thermal Adaptation of Cytosolic Malate Dehydrogenase Revealed by Deep Learning and Coevolutionary Analysis.

Journal of chemical theory and computation
Protein evolution has shaped enzymes that maintain stability and function across diverse thermal environments. While sequence variation, thermal stability and conformational dynamics are known to influence an enzyme's thermal adaptation, how these fa...

Machine learning methods to study sequence-ensemble-function relationships in disordered proteins.

Current opinion in structural biology
Recent years have seen tremendous developments in the use of machine learning models to link amino-acid sequence, structure, and function of folded proteins. These methods are, however, rarely applicable to the wide range of proteins and sequences th...

Enhancing Functional Protein Design Using Heuristic Optimization and Deep Learning for Anti-Inflammatory and Gene Therapy Applications.

Proteins
Protein sequence design is a highly challenging task, aimed at discovering new proteins that are more functional and producible under laboratory conditions than their natural counterparts. Deep learning-based approaches developed to address this prob...

Teaching AI to speak protein.

Current opinion in structural biology
Large Language Models for proteins, namely protein Language Models (pLMs), have begun to provide an important alternative to capturing the information encoded in a protein sequence in computers. Arguably, pLMs have advanced importantly to understandi...

Sampling Conformational Ensembles of Highly Dynamic Proteins via Generative Deep Learning.

Journal of chemical information and modeling
Proteins are inherently dynamic, and their conformational ensembles play a crucial role in biological function. Large-scale motions may govern the protein structure-function relationship, and numerous transient but stable conformations of intrinsical...

Toward deep learning sequence-structure co-generation for protein design.

Current opinion in structural biology
Deep generative models that learn from the distribution of natural protein sequences and structures may enable the design of new proteins with valuable functions. While the majority of today's models focus on generating either sequences or structures...

Dynamic Electronic Structure Fluctuations in the De Novo Peptide ACC-Dimer Revealed by First-Principles Theory and Machine Learning.

Journal of chemical information and modeling
Recent studies have reported long-range charge transport in peptide- and protein-based fibers and wires, rendering this class of materials as promising charge-conducting interfaces between biological systems and electronic devices. In the complex mol...

AI protocol for retrieving protein dynamic structures from two-dimensional infrared spectra.

Proceedings of the National Academy of Sciences of the United States of America
Understanding the dynamic evolution of protein structures is crucial for uncovering their biological functions. Yet, real-time prediction of these dynamic structures remains a significant challenge. Two-dimensional infrared (2DIR) spectroscopy is a p...

Simpler Protein Domain Identification Using Spectral Clustering.

Proteins
The decomposition of a biomolecular complex into domains is an important step to investigate biological functions and ease structure determination. A successful approach to do so is the SPECTRUS algorithm, which provides a segmentation based on spect...