Deep neural networks have shown great improvements in low-dose computed tomography (CT) denoising. Early algorithms were primarily optimized to obtain an accurate image with low distortion between the denoised image and reference full-dose image at t...
BACKGROUND: Dual-energy CT with virtual noncalcium (VNCa) images allows the evaluation of focal intramedullary bone marrow involvement in patients with multiple myeloma. However, current commercial VNCa techniques suffer from excessive image noise an...
Acta radiologica (Stockholm, Sweden : 1987)
Aug 17, 2022
BACKGROUND: The demand for homogeneous and higher vascular contrast enhancement is critical to provide an appropriate interpretation of abnormal vascular findings in coronary computed tomography angiography (CTA).
BACKGROUND AND PURPOSE: To investigate the image quality and accurate bone mineral density (BMD) on quantitative CT (QCT) for osteoporosis screening by deep-learning image reconstruction (DLIR) based on a multi-phantom and patient study.
Potential radioactive hazards in full-dose positron emission tomography (PET) imaging remain a concern, whereas the quality of low-dose images is never desirable for clinical use. So it is of great interest to translate low-dose PET images into full-...
PURPOSE: This study aimed to evaluate Artificial Neural Network (ANN) modeling to estimate the significant dose length product (DLP) value during the abdominal CT examinations for quality assurance in a retrospective, cross-sectional study.
OBJECTIVES: To evaluate a novel deep learning image reconstruction (DLIR) technique for dual-energy CT (DECT) derived virtual monoenergetic (VM) images compared to adaptive statistical iterative reconstruction (ASIR-V) in low kiloelectron volt (keV) ...
OBJECTIVES: To assess the impact of a new artificial intelligence deep-learning reconstruction (Precise Image; AI-DLR) algorithm on image quality against a hybrid iterative reconstruction (IR) algorithm in abdominal CT for different clinical indicati...
To compare the quality of CT images of the lung reconstructed using deep learning-based reconstruction (True Fidelity Image: TFI ™; GE Healthcare) to filtered back projection (FBP), and to determine the minimum tube current-time product in TFI withou...
OBJECTIVE: Ultra-high-resolution CT (UHR-CT), which can be applied normal resolution (NR), high-resolution (HR), and super-high-resolution (SHR) modes, has become available as in conjunction with multi-detector CT (MDCT). Moreover, deep learning reco...