AIMC Topic: Retinal Ganglion Cells

Clear Filters Showing 11 to 20 of 89 articles

Prediction and Detection of Glaucomatous Visual Field Progression Using Deep Learning on Macular Optical Coherence Tomography.

Journal of glaucoma
PRCIS: A deep learning model trained on macular OCT imaging studies detected clinically significant functional glaucoma progression and was also able to predict future progression.

Deep learning visual field global index prediction with optical coherence tomography parameters in glaucoma patients.

Scientific reports
The aim of this study was to predict three visual filed (VF) global indexes, mean deviation (MD), pattern standard deviation (PSD), and visual field index (VFI), from optical coherence tomography (OCT) parameters including Bruch's Membrane Opening-Mi...

Deep Learning Estimation of 10-2 Visual Field Map Based on Macular Optical Coherence Tomography Angiography Measurements.

American journal of ophthalmology
PURPOSE: To develop deep learning (DL) models estimating the central visual field (VF) from optical coherence tomography angiography (OCTA) vessel density (VD) measurements.

Multimodal Deep Learning Classifier for Primary Open Angle Glaucoma Diagnosis Using Wide-Field Optic Nerve Head Cube Scans in Eyes With and Without High Myopia.

Journal of glaucoma
PRCIS: An optical coherence tomography (OCT)-based multimodal deep learning (DL) classification model, including texture information, is introduced that outperforms single-modal models and multimodal models without texture information for glaucoma di...

The macular retinal ganglion cell layer as a biomarker for diagnosis and prognosis in multiple sclerosis: A deep learning approach.

Acta ophthalmologica
PURPOSE: The macular ganglion cell layer (mGCL) is a strong potential biomarker of axonal degeneration in multiple sclerosis (MS). For this reason, this study aims to develop a computer-aided method to facilitate diagnosis and prognosis in MS.

Development of a deep learning system to detect glaucoma using macular vertical optical coherence tomography scans of myopic eyes.

Scientific reports
Myopia is one of the risk factors for glaucoma, making accurate diagnosis of glaucoma in myopic eyes particularly important. However, diagnosis of glaucoma in myopic eyes is challenging due to the frequent associations of distorted optic disc and dis...

Diagnostic ability of macular microvasculature with swept-source OCT angiography for highly myopic glaucoma using deep learning.

Scientific reports
Macular OCT angiography (OCTA) measurements have been reported to be useful for glaucoma diagnostics. However, research on highly myopic glaucoma is lacking, and the diagnostic value of macular OCTA measurements versus OCT parameters remains inconclu...

Deep learning approaches to predict 10-2 visual field from wide-field swept-source optical coherence tomography en face images in glaucoma.

Scientific reports
Close monitoring of central visual field (VF) defects with 10-2 VF helps prevent blindness in glaucoma. We aimed to develop a deep learning model to predict 10-2 VF from wide-field swept-source optical coherence tomography (SS-OCT) images. Macular ga...

Deep Learning-Assisted Detection of Glaucoma Progression in Spectral-Domain OCT.

Ophthalmology. Glaucoma
PURPOSE: To develop and validate a deep learning (DL) model for detection of glaucoma progression using spectral-domain (SD)-OCT measurements of retinal nerve fiber layer (RNFL) thickness.

Deep Learning Estimation of 10-2 Visual Field Map Based on Circumpapillary Retinal Nerve Fiber Layer Thickness Measurements.

American journal of ophthalmology
PURPOSE: To estimate central 10-degree visual field (VF) map from spectral-domain optical coherence tomography (SD-OCT) retinal nerve fiber layer thickness (RNFL) measurements in glaucoma with artificial intelligence.