PRCIS: A deep learning model trained on macular OCT imaging studies detected clinically significant functional glaucoma progression and was also able to predict future progression.
The aim of this study was to predict three visual filed (VF) global indexes, mean deviation (MD), pattern standard deviation (PSD), and visual field index (VFI), from optical coherence tomography (OCT) parameters including Bruch's Membrane Opening-Mi...
PURPOSE: To develop deep learning (DL) models estimating the central visual field (VF) from optical coherence tomography angiography (OCTA) vessel density (VD) measurements.
PRCIS: An optical coherence tomography (OCT)-based multimodal deep learning (DL) classification model, including texture information, is introduced that outperforms single-modal models and multimodal models without texture information for glaucoma di...
PURPOSE: The macular ganglion cell layer (mGCL) is a strong potential biomarker of axonal degeneration in multiple sclerosis (MS). For this reason, this study aims to develop a computer-aided method to facilitate diagnosis and prognosis in MS.
Myopia is one of the risk factors for glaucoma, making accurate diagnosis of glaucoma in myopic eyes particularly important. However, diagnosis of glaucoma in myopic eyes is challenging due to the frequent associations of distorted optic disc and dis...
Macular OCT angiography (OCTA) measurements have been reported to be useful for glaucoma diagnostics. However, research on highly myopic glaucoma is lacking, and the diagnostic value of macular OCTA measurements versus OCT parameters remains inconclu...
Close monitoring of central visual field (VF) defects with 10-2 VF helps prevent blindness in glaucoma. We aimed to develop a deep learning model to predict 10-2 VF from wide-field swept-source optical coherence tomography (SS-OCT) images. Macular ga...
PURPOSE: To develop and validate a deep learning (DL) model for detection of glaucoma progression using spectral-domain (SD)-OCT measurements of retinal nerve fiber layer (RNFL) thickness.
PURPOSE: To estimate central 10-degree visual field (VF) map from spectral-domain optical coherence tomography (SD-OCT) retinal nerve fiber layer thickness (RNFL) measurements in glaucoma with artificial intelligence.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.