AIMC Topic: RNA

Clear Filters Showing 41 to 50 of 339 articles

Deep generative design of RNA aptamers using structural predictions.

Nature computational science
RNAs represent a class of programmable biomolecules capable of performing diverse biological functions. Recent studies have developed accurate RNA three-dimensional structure prediction methods, which may enable new RNAs to be designed in a structure...

GeoNet enables the accurate prediction of protein-ligand binding sites through interpretable geometric deep learning.

Structure (London, England : 1993)
The identification of protein binding residues is essential for understanding their functions in vivo. However, it remains a computational challenge to accurately identify binding sites due to the lack of known residue binding patterns. Local residue...

PseU-KeMRF: A Novel Method for Identifying RNA Pseudouridine Sites.

IEEE/ACM transactions on computational biology and bioinformatics
Pseudouridine is a type of abundant RNA modification that is seen in many different animals and is crucial for a variety of biological functions. Accurately identifying pseudouridine sites within the RNA sequence is vital for the subsequent study of ...

Predicting RNA sequence-structure likelihood via structure-aware deep learning.

BMC bioinformatics
BACKGROUND: The active functionalities of RNA are recognized to be heavily dependent on the structure and sequence. Therefore, a model that can accurately evaluate a design by giving RNA sequence-structure pairs would be a valuable tool for many rese...

Capture of RNA-binding proteins across mouse tissues using HARD-AP.

Nature communications
RNA-binding proteins (RBPs) modulate all aspects of RNA metabolism, but a comprehensive picture of RBP expression across tissues is lacking. Here, we describe our development of the method we call HARD-AP that robustly retrieves RBPs and tightly asso...

Wfold: A new method for predicting RNA secondary structure with deep learning.

Computers in biology and medicine
Precise estimations of RNA secondary structures have the potential to reveal the various roles that non-coding RNAs play in regulating cellular activity. However, the mainstay of traditional RNA secondary structure prediction methods relies on thermo...

RNAfcg: RNA Flexibility Prediction Based on Topological Centrality and Global Features.

Journal of chemical information and modeling
The dynamics of RNAs are related intimately to their functions. Molecular flexibility, as a starting point for understanding their dynamics, has been utilized to predict many characteristics associated with their functions. Since the experimental mea...

A Machine Learning Method for RNA-Small Molecule Binding Preference Prediction.

Journal of chemical information and modeling
The interaction between RNA and small molecules is crucial in various biological functions. Identifying molecules targeting RNA is essential for the inhibitor design and RNA-related studies. However, traditional methods focus on learning RNA sequence...

m5C-Seq: Machine learning-enhanced profiling of RNA 5-methylcytosine modifications.

Computers in biology and medicine
Epigenetic modifications, particularly RNA methylation and histone alterations, play a crucial role in heredity, development, and disease. Among these, RNA 5-methylcytosine (m5C) is the most prevalent RNA modification in mammalian cells, essential fo...

MultiModRLBP: A Deep Learning Approach for Multi-Modal RNA-Small Molecule Ligand Binding Sites Prediction.

IEEE journal of biomedical and health informatics
This study aims to tackle the intricate challenge of predicting RNA-small molecule binding sites to explore the potential value in the field of RNA drug targets. To address this challenge, we propose the MultiModRLBP method, which integrates multi-mo...