This study proposes a novel gesture recognition system based on LoRa technology, integrating advanced signal preprocessing, adaptive segmentation algorithms, and an improved SS-ResNet50 deep learning model. Through the combination of residual learnin...
Arrhythmia is an irregularity in the rhythm of the heartbeat, and it is the primary method for detecting cardiac abnormalities. The electrocardiogram (ECG) identifies arrhythmias and is one of the methods used to diagnose cardiac issues. Traditional ...
Our research introduces a framework that integrates edge computing, quantum transfer learning, and federated learning to revolutionize pain level assessment through ECG signal analysis. The primary focus lies in developing a robust, privacy-preservin...
Respiratory rate (RR) changes in the elderly can indicate serious diseases. Thus, accurate estimation of RRs for cardiopulmonary function is essential for home health monitoring systems. However, machine learning (ML) algorithm errors embedded in hea...
Brain-computer interfaces (BCIs) based on electroencephalography (EEG) enable neural activity interpretation for device control, with motor imagery (MI) serving as a key paradigm for decoding imagined movements. Efficient feature extraction from raw ...
The analysis of cognitive patterns through brain signals offers critical insights into human cognition, including perception, attention, memory, and decision-making. However, accurately classifying these signals remains a challenge due to their inher...
The availability of large-scale electrocardiogram (ECG) databases and advancements in machine learning have facilitated the development of automated diagnostic systems for cardiac arrhythmias. Deep learning models, despite their potential for high ac...
BACKGROUND: Motion sickness has been a key factor affecting user experience in Virtual Reality (VR) and limiting the development of the VR industry. Accurate detection of Virtual Reality Motion Sickness (VRMS) is a prerequisite for solving the proble...
- In recent times, the electrocardiogram (ECG) has been considered as a significant and effective screening mode in clinical practice to assess cardiac arrhythmias. Precise feature extraction and classification are considered as essential concerns in...
Neural networks : the official journal of the International Neural Network Society
40081275
Deep Neural Networks (DNNs) have been successfully implemented across various signal processing fields, resulting in significant enhancements in performance. However, DNNs generally require substantial computational resources, leading to significant ...