AIMC Topic: Sleep Stages

Clear Filters Showing 11 to 20 of 222 articles

GraphSleepFormer: a multi-modal graph neural network for sleep staging in OSA patients.

Journal of neural engineering
Obstructive sleep apnea (OSA) is a prevalent sleep disorder. Accurate sleep staging is one of the prerequisites in the study of sleep-related disorders and the evaluation of sleep quality. We introduce a novel GraphSleepFormer (GSF) network designed ...

Explainable multiscale temporal convolutional neural network model for sleep stage detection based on electroencephalogram activities.

Journal of neural engineering
Humans spend a significant portion of their lives in sleep (an essential driver of body metabolism). Moreover, as sleep deprivation could cause various health complications, it is crucial to develop an automatic sleep stage detection model to facilit...

Joint Driver State Classification Approach: Face Classification Model Development and Facial Feature Analysis Improvement.

Sensors (Basel, Switzerland)
Driver drowsiness remains a critical factor in road safety, necessitating the development of robust detection methodologies. This study presents a dual-framework approach that integrates a convolutional neural network (CNN) and a facial landmark anal...

Latent alignment in deep learning models for EEG decoding.

Journal of neural engineering
. Brain-computer interfaces (BCIs) face a significant challenge due to variability in electroencephalography (EEG) signals across individuals. While recent approaches have focused on standardizing input signal distributions, we propose that aligning ...

PhysioEx: a new Python library for explainable sleep staging through deep learning.

Physiological measurement
Sleep staging is a crucial task in clinical and research contexts for diagnosing and understanding sleep disorders. This work introduces PhysioEx (Physiological Signal Explainer), a Python library designed to support the analysis of sleep stages usin...

WaveSleepNet: An Interpretable Network for Expert-Like Sleep Staging.

IEEE journal of biomedical and health informatics
Although deep learning algorithms have proven their efficiency in automatic sleep staging, their "black-box" nature has limited their clinical adoption. In this study, we propose WaveSleepNet, an interpretable neural network for sleep staging that re...

A Multimodal Consistency-Based Self-Supervised Contrastive Learning Framework for Automated Sleep Staging in Patients With Disorders of Consciousness.

IEEE journal of biomedical and health informatics
Sleep is a fundamental human activity, and automated sleep staging holds considerable investigational potential. Despite numerous deep learning methods proposed for sleep staging that exhibit notable performance, several challenges remain unresolved,...

S4Sleep: Elucidating the design space of deep-learning-based sleep stage classification models.

Computers in biology and medicine
Machine-learning-based automatic sleep stage scoring is a promising approach to enhance the time-consuming manual annotation process of polysomnography recordings. Although numerous algorithms have been proposed for this purpose, systematic explorati...

Real-Time Driver Drowsiness Detection Using Facial Analysis and Machine Learning Techniques.

Sensors (Basel, Switzerland)
Drowsy driving poses a significant challenge to road safety worldwide, contributing to thousands of accidents and fatalities annually. Despite advancements in driver drowsiness detection (DDD) systems, many existing methods face limitations such as i...

Deep Learning for Pediatric Sleep Staging From Photoplethysmography: A Transfer Learning Approach From Adults to Children.

IEEE transactions on bio-medical engineering
BACKGROUND: Sleep staging is critical for diagnosing sleep disorders. Traditional methods in clinical settings involve time-intensive scoring procedures. Recent advancements in data-driven algorithms using photoplethysmogram (PPG) time series have sh...