BACKGROUND: Stochastic resonance (SR) is achieved when a faint signal is improved with the addition of the appropriate amount of white noise. Perceptual thresholds are expected to follow a characteristic performance improvement curve as a function of...
This article studies the practical exponential stability of impulsive stochastic reaction-diffusion systems (ISRDSs) with delays. First, a direct approach and the Lyapunov method are developed to investigate the p th moment practical exponential stab...
Computational intelligence and neuroscience
Jan 1, 2022
It is well known that stochastic coupled oscillator network (SCON) has been widely applied; however, there are few studies on SCON with bidirectional cross-dispersal (SCONBC). This paper intends to study stochastic stability for SCONBC. A new and sui...
Computational intelligence and neuroscience
Jan 1, 2022
The exponential synchronization (ES) of Cohen-Grossberg stochastic neural networks with inertial terms (CGSNNIs) is studied in this paper. It is investigated in two ways. The first way is using variable substitution to transform the system to another...
This paper presents a framework for spiking neural networks to be prepared for the Integrated Information Theory (IIT) analysis, using a stochastic nonlinear integrate-and-fire model. The model includes the crucial dynamics of the all-or-none law and...
Stroke poses an immense public health burden and remains among the primary causes of death and disability worldwide. Emergent therapy is often precluded by late or indeterminate times of onset before initial clinical presentation. Rapid, mobile, safe...
Stochastic models of biomolecular reaction networks are commonly employed in systems and synthetic biology to study the effects of stochastic fluctuations emanating from reactions involving species with low copy-numbers. For such models, the Kolmogor...
We show analytically that training a neural network by conditioned stochastic mutation or neuroevolution of its weights is equivalent, in the limit of small mutations, to gradient descent on the loss function in the presence of Gaussian white noise. ...
We present artificial neural networks as a feasible replacement for a mechanistic model of mosquito abundance. We develop a feed-forward neural network, a long short-term memory recurrent neural network, and a gated recurrent unit network. We evaluat...
Proceedings of the National Academy of Sciences of the United States of America
Oct 26, 2021
In this paper, we introduce the , a nonconvex, yet analytically tractable, optimization program, in a quest to better understand deep neural networks that are trained for a sufficiently long time. As the name suggests, this model is derived by isolat...