AIMC Topic: Disease Susceptibility

Clear Filters Showing 1 to 10 of 45 articles

Spatial prediction of human brucellosis susceptibility using an explainable optimized adaptive neuro fuzzy inference system.

Acta tropica
Brucellosis, a zoonotic disease caused by Brucella bacteria, poses significant risks to human, livestock, and wildlife health, alongside economic losses from livestock morbidity and mortality. This study improves Human Brucellosis Susceptibility Mapp...

Managing spatio-temporal heterogeneity of susceptibles by embedding it into an homogeneous model: A mechanistic and deep learning study.

PLoS computational biology
Accurate prediction of epidemics is pivotal for making well-informed decisions for the control of infectious diseases, but addressing heterogeneity in the system poses a challenge. In this study, we propose a novel modelling framework integrating the...

Development and validation of a practical machine-learning triage algorithm for the detection of patients in need of critical care in the emergency department.

Scientific reports
Identifying critically ill patients is a key challenge in emergency department (ED) triage. Mis-triage errors are still widespread in triage systems around the world. Here, we present a machine learning system (MLS) to assist ED triage officers bette...

Machine learning models for screening carotid atherosclerosis in asymptomatic adults.

Scientific reports
Carotid atherosclerosis (CAS) is a risk factor for cardiovascular and cerebrovascular events, but duplex ultrasonography isn't recommended in routine screening for asymptomatic populations according to medical guidelines. We aim to develop machine le...

Risk factor assessments of temporomandibular disorders via machine learning.

Scientific reports
This study aimed to use artificial intelligence to determine whether biological and psychosocial factors, such as stress, socioeconomic status, and working conditions, were major risk factors for temporomandibular disorders (TMDs). Data were retrieve...

Machine learning risk prediction model for acute coronary syndrome and death from use of non-steroidal anti-inflammatory drugs in administrative data.

Scientific reports
Our aim was to investigate the usefulness of machine learning approaches on linked administrative health data at the population level in predicting older patients' one-year risk of acute coronary syndrome and death following the use of non-steroidal ...

Uncovering cancer vulnerabilities by machine learning prediction of synthetic lethality.

Molecular cancer
BACKGROUND: Synthetic lethality describes a genetic interaction between two perturbations, leading to cell death, whereas neither event alone has a significant effect on cell viability. This concept can be exploited to specifically target tumor cells...

Prediction of venous thromboembolism with machine learning techniques in young-middle-aged inpatients.

Scientific reports
Accumulating studies appear to suggest that the risk factors for venous thromboembolism (VTE) among young-middle-aged inpatients are different from those among elderly people. Therefore, the current prediction models for VTE are not applicable to you...

Machine Learning Identifies Complicated Sepsis Course and Subsequent Mortality Based on 20 Genes in Peripheral Blood Immune Cells at 24 H Post-ICU Admission.

Frontiers in immunology
A complicated clinical course for critically ill patients admitted to the intensive care unit (ICU) usually includes multiorgan dysfunction and subsequent death. Owing to the heterogeneity, complexity, and unpredictability of the disease progression,...

Towards a Precision Medicine Approach Based on Machine Learning for Tailoring Medical Treatment in Alkaptonuria.

International journal of molecular sciences
ApreciseKUre is a multi-purpose digital platform facilitating data collection, integration and analysis for patients affected by Alkaptonuria (AKU), an ultra-rare autosomal recessive genetic disease. It includes genetic, biochemical, histopathologica...