Integrating Machine Learning and Follow-Up Variables to Improve Early Detection of Hepatocellular Carcinoma in Tyrosinemia Type 1: A Multicenter Study.

Journal: International journal of molecular sciences
PMID:

Abstract

Hepatocellular carcinoma (HCC) is a major complication of tyrosinemia type 1 (HT-1), an inborn error of metabolism affecting tyrosine catabolism. The risk of HCC is higher in late diagnoses despite treatment. Alpha-fetoprotein (AFP) is widely used to detect liver cancer but has limitations in early-stage HCC detection. This study aimed to implement a machine-learning (ML) approach to identify the most relevant laboratory variables to predict AFP alteration using constrained multidimensional data from Chilean and Italian HT-1 cohorts. A longitudinal retrospective study analyzed 219 records from 35 HT-1 patients, including 8 with HCC and 5 diagnosed through newborn screening. The dataset contained biochemical and demographic variables that were analyzed using the eXtreme Gradient Boosting algorithm, which was trained to predict abnormal AFP levels (>5 ng/mL). Four key variables emerged as significant predictors: alanine transaminase (ALT), alkaline phosphatase, age at diagnosis, and current age. ALT emerged as the most promising indicator of AFP alteration, potentially preceding AFP level changes and improving HCC detection specificity at a cut-off value of 29 UI/L (AUROC = 0.73). Despite limited data from this rare disease, the ML approach successfully analyzed follow-up biomarkers, identifying ALT as an early predictor of AFP elevation and a potential biomarker for HCC progression.

Authors

  • Karen Fuenzalida
    Laboratory of Genetic and Metabolic Diseases, Institute of Nutrition and Food Technology INTA, University of Chile, Av. El Libano 5524, Santiago 7830490, Chile.
  • María Jesús Leal-Witt
    Laboratory of Genetic and Metabolic Diseases, Institute of Nutrition and Food Technology INTA, University of Chile, Av. El Libano 5524, Santiago 7830490, Chile.
  • Alejandro Acevedo
    Laboratory of Genetic and Metabolic Diseases, Institute of Nutrition and Food Technology INTA, University of Chile, Av. El Libano 5524, Santiago 7830490, Chile.
  • Manuel Muñoz
    Laboratory of Genetic and Metabolic Diseases, Institute of Nutrition and Food Technology INTA, University of Chile, Av. El Libano 5524, Santiago 7830490, Chile.
  • Camila Gudenschwager
    Laboratory of Genetic and Metabolic Diseases, Institute of Nutrition and Food Technology INTA, University of Chile, Av. El Libano 5524, Santiago 7830490, Chile.
  • Carolina Arias
    Laboratory of Genetic and Metabolic Diseases, Institute of Nutrition and Food Technology INTA, University of Chile, Av. El Libano 5524, Santiago 7830490, Chile.
  • Juan Francisco Cabello
    Laboratory of Genetic and Metabolic Diseases, Institute of Nutrition and Food Technology INTA, University of Chile, Av. El Libano 5524, Santiago 7830490, Chile.
  • Giancarlo La Marca
    Meyer Children's Hospital IRCCS, Viale Gaetano Pieraccini, 24, 50139 Florence, Italy.
  • Cristiano Rizzo
    Division of Metabolic Diseases and Hepatology, Ospedale Pediatrico Bambino Gesù IRCCS, 00165 Rome, Italy.
  • Andrea Pietrobattista
    Division of Metabolic Diseases and Hepatology, Ospedale Pediatrico Bambino Gesù IRCCS, 00165 Rome, Italy.
  • Marco Spada
    Department of Paediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Turin, Italy.
  • Carlo Dionisi-Vici
    Division of Metabolic Diseases and Hepatology, Ospedale Pediatrico Bambino Gesù IRCCS, 00165 Rome, Italy.
  • Verónica Cornejo
    Laboratory of Genetic and Metabolic Diseases, Institute of Nutrition and Food Technology INTA, University of Chile, Av. El Libano 5524, Santiago 7830490, Chile.