Motion-Compensated Multishot Pancreatic Diffusion-Weighted Imaging With Deep Learning-Based Denoising.
Journal:
Investigative radiology
Published Date:
Jan 20, 2025
Abstract
OBJECTIVES: Pancreatic diffusion-weighted imaging (DWI) has numerous clinical applications, but conventional single-shot methods suffer from off resonance-induced artifacts like distortion and blurring while cardiovascular motion-induced phase inconsistency leads to quantitative errors and signal loss, limiting its utility. Multishot DWI (msDWI) offers reduced image distortion and blurring relative to single-shot methods but increases sensitivity to motion artifacts. Motion-compensated diffusion-encoding gradients (MCGs) reduce motion artifacts and could improve motion robustness of msDWI but come with the cost of extended echo time, further reducing signal. Thus, a method that combines msDWI with MCGs while minimizing the echo time penalty and maximizing signal would improve pancreatic DWI. In this work, we combine MCGs generated via convex-optimized diffusion encoding (CODE), which reduces the echo time penalty of motion compensation, with deep learning (DL)-based denoising to address residual signal loss. We hypothesize this method will qualitatively and quantitatively improve msDWI of the pancreas.