A Machine Learning Approach Yields a Multiparameter Prognostic Marker in Liver Cancer.
Journal:
Cancer immunology research
PMID:
33431375
Abstract
A number of staging systems have been developed to predict clinical outcomes in hepatocellular carcinoma (HCC). However, no general consensus has been reached regarding the optimal model. New approaches such as machine learning (ML) strategies are powerful tools for incorporating risk factors from multiple platforms. We retrospectively reviewed the baseline information, including clinicopathologic characteristics, laboratory parameters, and peripheral immune features reflecting T-cell function, from three HCC cohorts. A gradient-boosting survival (GBS) classifier was trained with prognosis-related variables in the training dataset and validated in two independent cohorts. We constructed a 20-feature GBS model classifier incorporating one clinical feature, 14 laboratory parameters, and five T-cell function parameters obtained from peripheral blood mononuclear cells. The GBS model-derived risk scores demonstrated high concordance indexes (C-indexes): 0.844, 0.827, and 0.806 in the training set and validation sets 1 and 2, respectively. The GBS classifier could separate patients into high-, medium- and low-risk subgroups with respect to death in all datasets ( < 0.05 for all comparisons). A higher risk score was positively correlated with a higher clinical stage and the presence of portal vein tumor thrombus (PVTT). Subgroup analyses with respect to Child-Pugh class, Barcelona Clinic Liver Cancer stage, and PVTT status supported the prognostic relevance of the GBS-derived risk algorithm independent of the conventional tumor staging system. In summary, a multiparameter ML algorithm incorporating clinical characteristics, laboratory parameters, and peripheral immune signatures offers a different approach to identify patients with the greatest risk of HCC-related death.
Authors
Keywords
Adolescent
Adult
Carcinoma, Hepatocellular
Female
Hepatectomy
Humans
Immune Checkpoint Proteins
Kaplan-Meier Estimate
Liver
Liver Neoplasms
Lymphocyte Count
Machine Learning
Male
Middle Aged
Models, Immunological
Neoplasm Invasiveness
Neoplasm Staging
Portal Vein
Prognosis
Retrospective Studies
Risk Assessment
Risk Factors
T-Lymphocytes
Venous Thrombosis
Young Adult