Interrogation of the secondary structures of proteins is essential for designing and engineering more effective and safer protein-based biomaterials and other classes of theranostic materials. Protein secondary structures are commonly assessed using ...
Electrospun drug-loaded polymeric nanofibers can improve the efficacy of therapeutics for a variety of implications. By design, these biomaterial platforms can enhance drug bioavailability and site-specific delivery while reducing off-target toxiciti...
Living materials, which include various types of cells, organelles, and biological components from animals, plants, and microorganisms, have become central to recent investigations in micro and nanorobotics. Living material-derived intelligent micro/...
The myotendinous junction (MTJ) facilitates force transmission between muscle and tendon to produce joint movement. The complex microarchitecture and regional mechanical heterogeneity of the myotendinous junction pose major challenges in creating thi...
Microrobots, which can perform tasks in difficult-to-reach parts of the human body under their own or external power supply, are potential tools for biomedical applications, such as drug delivery, microsurgery, imaging and monitoring, tissue engineer...
Nanozymes, a distinctive class of nanomaterials endowed with enzyme-like activity and kinetics akin to enzyme-catalysed reactions, present several advantages over natural enzymes, including cost-effectiveness, heightened stability, and adjustable act...
With the advancement in nanotechnology, we are experiencing transformation in world order with deep insemination of nanoproducts from basic necessities to advanced electronics, health care products and medicines. Therefore, nanoproducts, however, can...