BACKGROUND AND AIMS: EUS is a high-skill technique that requires numerous procedures to achieve competence. However, training facilities are limited worldwide. Convolutional neural network (CNN) models have been previously implemented for object dete...
BACKGROUND AND AIMS: Gastric cancer (GC) is associated with chronic gastritis. To evaluate the risk, the Operative Link on Gastric Intestinal Metaplasia Assessment (OLGIM) system was constructed and showed a higher GC risk in stage III or IV patients...
BACKGROUND AND AIMS: It is crucial to accurately determine malignant biliary strictures (MBSs) for early curative treatment. This study aimed to develop a real-time interpretable artificial intelligence (AI) system to predict MBSs under digital singl...
BACKGROUND AND AIMS: EGD is essential for GI disorders, and reports are pivotal to facilitating postprocedure diagnosis and treatment. Manual report generation lacks sufficient quality and is labor intensive. We reported and validated an artificial i...
In the past few years, we have seen a surge in the development of relevant artificial intelligence (AI) algorithms addressing a variety of needs in GI endoscopy. To accept AI algorithms into clinical practice, their effectiveness, clinical value, and...
BACKGROUND AND AIMS: Celiac disease with its endoscopic manifestation of villous atrophy (VA) is underdiagnosed worldwide. The application of artificial intelligence (AI) for the macroscopic detection of VA at routine EGD may improve diagnostic perfo...