AI Medical Compendium Journal:
Molecular phylogenetics and evolution

Showing 1 to 9 of 9 articles

Towards the next generation of species delimitation methods: An overview of machine learning applications.

Molecular phylogenetics and evolution
Species delimitation is the process of distinguishing between populations of the same species and distinct species of a particular group of organisms. Various methods exist for inferring species limits, whether based on morphological, molecular, or o...

Machine learning can be as good as maximum likelihood when reconstructing phylogenetic trees and determining the best evolutionary model on four taxon alignments.

Molecular phylogenetics and evolution
Phylogenetic tree reconstruction with molecular data is important in many fields of life science research. The gold standard in this discipline is the phylogenetic tree reconstruction based on the Maximum Likelihood method. In this study, we present ...

Inferring phylogenetic networks from multifurcating trees via cherry picking and machine learning.

Molecular phylogenetics and evolution
The Hybridization problem asks to reconcile a set of conflicting phylogenetic trees into a single phylogenetic network with the smallest possible number of reticulation nodes. This problem is computationally hard and previous solutions are limited to...

Tracing the genealogy origin of geographic populations based on genomic variation and deep learning.

Molecular phylogenetics and evolution
Assigning a query individual animal or plant to its derived population is a prime task in diverse applications related to organismal genealogy. Such endeavors have conventionally relied on short DNA sequences under a phylogenetic framework. These met...

Artificial intelligence enables unified analysis of historical and landscape influences on genetic diversity.

Molecular phylogenetics and evolution
While genetic variation in any species is potentially shaped by a range of processes, phylogeography and landscape genetics are largely concerned with inferring how environmental conditions and landscape features impact neutral intraspecific diversit...

Applications of machine learning in phylogenetics.

Molecular phylogenetics and evolution
Machine learning has increasingly been applied to a wide range of questions in phylogenetic inference. Supervised machine learning approaches that rely on simulated training data have been used to infer tree topologies and branch lengths, to select s...

Unsupervised machine learning for species delimitation, integrative taxonomy, and biodiversity conservation.

Molecular phylogenetics and evolution
Integrative taxonomy, combining data from multiple axes of biologically relevant variation, is a major goal of systematics. Ideally, such taxonomies will derive from similarly integrative species-delimitation analyses. Yet, most current methods rely ...

ModelRevelator: Fast phylogenetic model estimation via deep learning.

Molecular phylogenetics and evolution
Selecting the best model of sequence evolution for a multiple-sequence-alignment (MSA) constitutes the first step of phylogenetic tree reconstruction. Common approaches for inferring nucleotide models typically apply maximum likelihood (ML) methods, ...

A demonstration of unsupervised machine learning in species delimitation.

Molecular phylogenetics and evolution
One major challenge to delimiting species with genetic data is successfully differentiating population structure from species-level divergence, an issue exacerbated in taxa inhabiting naturally fragmented habitats. Many fields of science are now usin...