AI Medical Compendium Journal:
The Science of the total environment

Showing 31 to 40 of 226 articles

Machine learning models reveal how polycyclic aromatic hydrocarbons influence environmental bacterial communities.

The Science of the total environment
Polycyclic aromatic hydrocarbons (PAHs) are harmful and widespread pollutants in the environment, posing an ecological threat. However, exploring the influence of PAHs on environmental bacterial communities in different habitats (soil, water, and sed...

Applying machine learning and genetic algorithms accelerated for optimizing ethanol production.

The Science of the total environment
Corn straws can produce bioethanol via simultaneous saccharification and co-fermentation (SSCF). However, identifying optimal combinations of operating parameters from numerous possibilities through a cost-effective strategy to improve SSCF efficienc...

Imaging pollen using a Raspberry Pi and LED with deep learning.

The Science of the total environment
The production of low-cost, small footprint imaging sensor would be invaluable for airborne global monitoring of pollen, which could allow for mitigation of hay fever symptoms. We demonstrate the use of a white light LED (light emitting diode) to ill...

Pharmaceuticals and personal care product modelling: Unleashing artificial intelligence and machine learning capabilities and impact on one health and sustainable development goals.

The Science of the total environment
The presence of pharmaceutical and personal care products (PPCPs) in the environment poses a significant threat to environmental resources, given their potential risks to ecosystems and human health, even in trace amounts. While mathematical modellin...

Machine learning prediction and exploration of phosphorus migration and transformation during hydrothermal treatment of biomass waste.

The Science of the total environment
Hydrothermal treatment (HTT) held promise for phosphorus (P) recovery from high-moisture biomass. However, traditional experimental studies of P hydrothermal conversion were time-consuming and labor-intensive. Thus, based on biomass characteristics a...

Leveraging machine learning for sustainable cultivation of Zn-enriched crops in Cd-contaminated karst regions.

The Science of the total environment
Karst soils often exhibit elevated zinc (Zn) levels, providing an opportunity to cultivate Zn-enriched crops. (meanwhile) However, these soils also frequently contain high background levels of toxic metals, particularly cadmium (Cd), posing potential...

Classifying eutrophication spatio-temporal dynamics in river systems using deep learning technique.

The Science of the total environment
Eutrophication is a major cause of water quality degradation in South Korea, owing to severe algal blooms. To manage eutrophication, the South Korean government provided the Trophic State Index (TSIko), which was revised according to Carlson's TSI. T...

Co-exposure to microplastics and soil pollutants significantly exacerbates toxicity to crops: Insights from a global meta and machine-learning analysis.

The Science of the total environment
Environmental contamination of microplastics (MPs) is ubiquitous worldwide, and co-contamination of arable soils with MPs and other pollutants is of increasing concern, and may lead to unexpected consequences on crop production. However, the overall ...

Machine learning and structural equation modeling for revealing the influence factors and pathways of different water management regimes acting on brown rice cadmium.

The Science of the total environment
Excessive cadmium (Cd) in brown rice has detrimental effects on rice growth and human health. Water management is a cost-effective, eco-friendly measure to suppress Cd accumulation in rice. However, there is no acknowledged water management regime th...

Identifying the habitat suitability of Pteris vittata in China and associated key drivers using machine learning models.

The Science of the total environment
Pteris vittata (P. vittata) possesses significant potential in remediating arsenic (As) soil pollution. Understanding the habitat suitability of P. vittata in China and pinpointing the key drivers that influence its distribution can facilitate the id...