AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Anopheles

Showing 11 to 16 of 16 articles

Clear Filters

Identifying targets of selection in mosaic genomes with machine learning: applications in Anopheles gambiae for detecting sites within locally adapted chromosomal inversions.

Molecular ecology
Chromosomal inversions are important structural changes that may facilitate divergent selection when they capture co-adaptive loci in the face of gene flow. However, identifying selection targets within inversions can be challenging. The high degrees...

A neural network prediction of environmental determinants of Anopheles sinensis knockdown resistance mutation to pyrethroids in China.

Journal of vector ecology : journal of the Society for Vector Ecology
Selection pressure caused by long-term intensive use of insecticides is the key driving force in resistance development. Additional parameters such as environmental conditions may affect both the mosquito response to insecticides and the selection of...

Genome-wide pre-miRNA discovery from few labeled examples.

Bioinformatics (Oxford, England)
MOTIVATION: Although many machine learning techniques have been proposed for distinguishing miRNA hairpins from other stem-loop sequences, most of the current methods use supervised learning, which requires a very good set of positive and negative ex...

diploS/HIC: An Updated Approach to Classifying Selective Sweeps.

G3 (Bethesda, Md.)
Identifying selective sweeps in populations that have complex demographic histories remains a difficult problem in population genetics. We previously introduced a supervised machine learning approach, S/HIC, for finding both hard and soft selective s...

Age grading An. gambiae and An. arabiensis using near infrared spectra and artificial neural networks.

PloS one
BACKGROUND: Near infrared spectroscopy (NIRS) is currently complementing techniques to age-grade mosquitoes. NIRS classifies lab-reared and semi-field raised mosquitoes into < or ≥ 7 days old with an average accuracy of 80%, achieved by training a re...

Using mid-infrared spectroscopy and supervised machine-learning to identify vertebrate blood meals in the malaria vector, Anopheles arabiensis.

Malaria journal
BACKGROUND: The propensity of different Anopheles mosquitoes to bite humans instead of other vertebrates influences their capacity to transmit pathogens to humans. Unfortunately, determining proportions of mosquitoes that have fed on humans, i.e. Hum...