AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Host Specificity

Showing 1 to 10 of 12 articles

Clear Filters

Machine learning identifies signatures of host adaptation in the bacterial pathogen Salmonella enterica.

PLoS genetics
Emerging pathogens are a major threat to public health, however understanding how pathogens adapt to new niches remains a challenge. New methods are urgently required to provide functional insights into pathogens from the massive genomic data sets no...

Using mid-infrared spectroscopy and supervised machine-learning to identify vertebrate blood meals in the malaria vector, Anopheles arabiensis.

Malaria journal
BACKGROUND: The propensity of different Anopheles mosquitoes to bite humans instead of other vertebrates influences their capacity to transmit pathogens to humans. Unfortunately, determining proportions of mosquitoes that have fed on humans, i.e. Hum...

A guide to machine learning for bacterial host attribution using genome sequence data.

Microbial genomics
With the ever-expanding number of available sequences from bacterial genomes, and the expectation that this data type will be the primary one generated from both diagnostic and research laboratories for the foreseeable future, then there is both an o...

Machine learning methods accurately predict host specificity of coronaviruses based on spike sequences alone.

Biochemical and biophysical research communications
Coronaviruses infect many animals, including humans, due to interspecies transmission. Three of the known human coronaviruses: MERS, SARS-CoV-1, and SARS-CoV-2, the pathogen for the COVID-19 pandemic, cause severe disease. Improved methods to predict...

Analysis of protein determinants of host-specific infection properties of polyomaviruses using machine learning.

Genes & genomics
BACKGROUND: The large tumor antigen (LT-Ag) and major capsid protein VP1 are known to play important roles in determining the host-specific infection properties of polyomaviruses (PyVs).

Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations.

Nature communications
Our knowledge of viral host ranges remains limited. Completing this picture by identifying unknown hosts of known viruses is an important research aim that can help identify and mitigate zoonotic and animal-disease risks, such as spill-over from anim...

Large-scale genomic survey with deep learning-based method reveals strain-level phage specificity determinants.

GigaScience
BACKGROUND: Phage therapy, reemerging as a promising approach to counter antimicrobial-resistant infections, relies on a comprehensive understanding of the specificity of individual phages. Yet the significant diversity within phage populations prese...

Prediction of Klebsiella phage-host specificity at the strain level.

Nature communications
Phages are increasingly considered promising alternatives to target drug-resistant bacterial pathogens. However, their often-narrow host range can make it challenging to find matching phages against bacteria of interest. Current computational tools d...

Predicting the bacterial host range of plasmid genomes using the language model-based one-class support vector machine algorithm.

Microbial genomics
The prediction of the plasmid host range is crucial for investigating the dissemination of plasmids and the transfer of resistance and virulence genes mediated by plasmids. Several machine learning-based tools have been developed to predict plasmid h...

MOSTPLAS: a self-correction multi-label learning model for plasmid host range prediction.

Bioinformatics (Oxford, England)
MOTIVATION: Plasmids play an essential role in horizontal gene transfer, aiding their host bacteria in acquiring beneficial traits like antibiotic and metal resistance. There exist some plasmids that can transfer, replicate, or persist in multiple or...