AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Artifacts

Showing 51 to 60 of 645 articles

Clear Filters

Research on the effectiveness of multi-view slice correction strategy based on deep learning in high pitch helical CT reconstruction.

Journal of X-ray science and technology
BACKGROUND: Recent studies have explored layered correction strategies, employing a slice-by-slice approach to mitigate the prominent limited-view artifacts present in reconstructed images from high-pitch helical CT scans. However, challenges persist...

Classification of Artifacts in Multimodal Fused Images using Transfer Learning with Convolutional Neural Networks.

Current medical imaging
INTRODUCTION: Multimodal medical image fusion techniques play an important role in clinical diagnosis and treatment planning. The process of combining multimodal images involves several challenges depending on the type of modality, transformation tec...

Machine Learning Applied to Reference Signal-Less Detection of Motion Artifacts in Photoplethysmographic Signals: A Review.

Sensors (Basel, Switzerland)
Machine learning algorithms have brought remarkable advancements in detecting motion artifacts (MAs) from the photoplethysmogram (PPG) with no measured or synthetic reference data. However, no study has provided a synthesis of these methods, let alon...

An integrated approach to a predictive and ranking model of use error using fuzzy BWM and fuzzy TOPSIS.

International journal of occupational safety and ergonomics : JOSE
Avoiding error in handling artifacts is crucial for achieving a high level of system reliability and safety assessment. This study develops a predictive and ranking model of use error (PRUE). In the first phase, use errors are systematically detected...

Deep learning methods for 3D magnetic resonance image denoising, bias field and motion artifact correction: a comprehensive review.

Physics in medicine and biology
Magnetic resonance imaging (MRI) provides detailed structural information of the internal body organs and soft tissue regions of a patient in clinical diagnosis for disease detection, localization, and progress monitoring. MRI scanner hardware manufa...

GraFMRI: A graph-based fusion framework for robust multi-modal MRI reconstruction.

Magnetic resonance imaging
PURPOSE: This study introduces GraFMRI, a novel framework designed to address the challenges of reconstructing high-quality MRI images from undersampled k-space data. Traditional methods often suffer from noise amplification and loss of structural de...

Evaluation of SR-DLR in low-dose abdominal CT: superior image quality and noise reduction.

Abdominal radiology (New York)
OBJECTIVES: To evaluate the effectiveness of super-resolution deep learning reconstruction (SR-DLR) in low-dose abdominal computed tomography (CT) imaging compared with hybrid iterative reconstruction (HIR) and conventional deep learning reconstructi...

Comparison of different acceleration factors of artificial intelligence-compressed sensing for brachial plexus MRI imaging: scanning time and image quality.

BMC medical imaging
BACKGROUND: 3D brachial plexus MRI scanning is prone to examination failure due to the lengthy scan times, which can lead to patient discomfort and motion artifacts. Our purpose is to investigate the efficacy of artificial intelligence-assisted compr...

Fast motion-compensated reconstruction for 4D-CBCT using deep learning-based groupwise registration.

Biomedical physics & engineering express
. Previous work has that deep learning (DL)-enhanced 4D cone beam computed tomography (4D-CBCT) images improve motion modeling and subsequent motion-compensated (MoCo) reconstruction for 4D-CBCT. However, building the motion model at treatment time v...

Development and evaluation of a deep learning model to reduce exomass-related metal artefacts in cone-beam CT: an ex vivo study using porcine mandibles.

Dento maxillo facial radiology
OBJECTIVES: To develop and evaluate a deep learning (DL) model to reduce metal artefacts originating from the exomass in cone-beam CT (CBCT) of the jaws.