AIMC Topic: Betacoronavirus

Clear Filters Showing 1 to 10 of 189 articles

Classification of CT scan and X-ray dataset based on deep learning and particle swarm optimization.

PloS one
In 2019, the novel coronavirus swept the world, exposing the monitoring and early warning problems of the medical system. Computer-aided diagnosis models based on deep learning have good universality and can well alleviate these problems. However, tr...

Comparative study of DCNN and image processing based classification of chest X-rays for identification of COVID-19 patients using fine-tuning.

Journal of medical engineering & technology
The conventional detection of COVID-19 by evaluating the CT scan images is tiresome, often experiences high inter-observer variability and uncertainty issues. This work proposes the automatic detection and classification of COVID-19 by analysing the ...

Leveraging deep transfer learning and explainable AI for accurate COVID-19 diagnosis: Insights from a multi-national chest CT scan study.

Computers in biology and medicine
The COVID-19 pandemic has emerged as a global health crisis, impacting millions worldwide. Although chest computed tomography (CT) scan images are pivotal in diagnosing COVID-19, their manual interpretation by radiologists is time-consuming and poten...

Evaluating Explainable Artificial Intelligence (XAI) techniques in chest radiology imaging through a human-centered Lens.

PloS one
The field of radiology imaging has experienced a remarkable increase in using of deep learning (DL) algorithms to support diagnostic and treatment decisions. This rise has led to the development of Explainable AI (XAI) system to improve the transpare...

A SAR and QSAR study on 3CLpro inhibitors of SARS-CoV-2 using machine learning methods.

SAR and QSAR in environmental research
The 3C-like Proteinase (3CLpro) of novel coronaviruses is intricately linked to viral replication, making it a crucial target for antiviral agents. In this study, we employed two fingerprint descriptors (ECFP_4 and MACCS) to comprehensively character...

COVID-19 and Pneumonia detection and web deployment from CT scan and X-ray images using deep learning.

PloS one
During the COVID-19 pandemic, pneumonia was the leading cause of respiratory failure and death. In addition to SARS-COV-2, it can be caused by several other bacterial and viral agents. Even today, variants of SARS-COV-2 are endemic and COVID-19 cases...

COVID‑19 detection from chest X-ray images using transfer learning.

Scientific reports
COVID-19 is a kind of coronavirus that appeared in China in the Province of Wuhan in December 2019. The most significant influence of this virus is its very highly contagious characteristic which may lead to death. The standard diagnosis of COVID-19 ...

ISMI-VAE: A deep learning model for classifying disease cells using gene expression and SNV data.

Computers in biology and medicine
Various studies have linked several diseases, including cancer and COVID-19, to single nucleotide variations (SNV). Although single-cell RNA sequencing (scRNA-seq) technology can provide SNV and gene expression data, few studies have integrated and a...

Evaluation of deep learning approaches for identification of different corona-virus species and time series prediction.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Novel corona-virus (nCOV) has been declared as a pandemic that started from the city Wuhan of China. This deadly virus is infecting people rapidly and has targeted 4.93 million people across the world, with 227 K people being infected only in Italy. ...

Comparison of deep learning with regression analysis in creating predictive models for SARS-CoV-2 outcomes.

BMC medical informatics and decision making
BACKGROUND: Accurately predicting patient outcomes in Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could aid patient management and allocation of healthcare resources. There are a variety of methods which can be used to develop progno...